English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/50836
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Series expansions for an exact two-electron wave function in terms of Löwdin's renormalized natural orbitals

AutorNagy, Istvan; Aldazabal, Íñigo
Fecha de publicación2012
EditorAmerican Physical Society
CitaciónPhysical Review A 85(3): 034501 (2012)
ResumenIn recent developments on the pair density needed to treat the non-Hartree-Fock-like part of interparticle repulsion, the natural orbitals and sign-correct expansion coefficients play a central role. Since, in principle, an infinite number of natural orbitals must be included, the convergence of expectation values due to finite-term approximations is an important issue. Here we discuss quantitatively this convergence problem based on an exactly solvable two-electron model atom, where the Schrödinger wave function for the ground state is expressible in terms of Löwdin's natural orbitals and sign-correct expansion coefficients. Using properly renormalized truncated series expansions for such an exact decomposition, the corresponding expectation values of the Schrödinger Hamiltonian are calculated analytically. A rapid and uniform convergence is found in these expectation values at given values of the coupling in the interparticle repulsion. © 2012 American Physical Society.
Versión del editorhttp://dx.doi.org/10.1103/PhysRevA.85.034501
URIhttp://hdl.handle.net/10261/50836
DOI10.1103/PhysRevA.85.034501
Identificadoresdoi: 10.1103/PhysRevA.85.034501
issn: 1050-2947
Aparece en las colecciones: (CFM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Series expansions for an exact two-electron.pdf117,63 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.