English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/50799
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Momentum transfer correction for macroscopic-gradient boundary conditions in lattice Boltzmann methods

AutorIzquierdo, Salvador; Fueyo, Norberto
Fecha de publicación2010
EditorAcademic Press
CitaciónJournal of Computational Physics 229: 2497-2506 (2010)
ResumenThe boundary conditions used to represent macroscopic-gradient-related effects in arbitrary geometries with the lattice Boltzmann methods need a trade-off between the complexity of the scheme, due to the loss of localness and the difficulties for directly applying link-based approaches, and the accuracy obtained. A generalization of the momentum transfer boundary condition is presented, in which the arbitrary location of the boundary is addressed with link-wise interpolation (used for Dirichlet conditions) and the macroscopic gradient is taken into account with a finite-difference scheme. This leads to a stable approach for arbitrary geometries that can be used to impose Neumann and Robin boundary conditions. The proposal is validated for stress boundary conditions at walls. Two-dimensional steady and unsteady configurations are used as test case: partial-slip flow between two infinite plates and the slip flow past a circular cylinder. © 2009 Elsevier Inc. All rights reserved.
URIhttp://hdl.handle.net/10261/50799
DOI10.1016/j.jcp.2009.11.036
Identificadoresdoi: 10.1016/j.jcp.2009.11.036
issn: 0021-9991
Aparece en las colecciones: (LIFTEC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.