English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/5030
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Water balance simulation of a dryland soil during fallow under conventional and conservation tillage in semiarid Aragon, Northeast Spain

AuthorsMoret-Fernández, David ; Braud, Isabelle; Arrúe Ugarte, José Luis
KeywordsWater balance
Modelling
Soil water conservation
Tillage management
Long-fallowing
Issue DateJan-2007
PublisherElsevier
CitationSoil and Tillage Research, Volume 92, Issues 1-2, January 2007, Pages 251-263
AbstractIn Central Aragon, winter cereal is sown in the autumn (November–December), commonly after a 16–18 months fallow period aimed at conserving soil water. This paper uses the Simple Soil–Plant–Atmosphere Transfer (SiSPAT) model, in conjunction with field data, to study the effect of long fallowing on the soil water balance under three tillage management systems (conventional tillage, CT; reduced tillage, RT; and no-tillage, NT). This was on the assumption that soil properties would remain unchanged during the entire fallow season. Once the model was validated with data obtained before primary tillage implementation, the differences between simulated and observed soil water losses for the CT and RT treatments could be interpreted as the direct effect of the soil tillage system. The model was calibrated and validated in a long-term tillage experiment using data from three contrasting long-fallow seasons over the period 1999–2002, where special attention was paid to predicting soil hydraulic properties in the pre-tillage conditions. The capacity of the model to simulate the soil water balance and its components over long fallowing was demonstrated. Both the fallow rainfall pattern and the tillage management system affected the soil water budget and components predicted by the model. The model predicted that about 81% of fallow seasonal rainfall is lost by evaporation in long-fallow periods with both a dry autumn in the first year of fallow and a rainfall above normal in spring. Whereas, when the fallow season is characterised by a wet autumn during the first year of fallow the model predicted a decrease in soil water evaporation and an increase in water storage and deep drainage components. In this case, the predicted water lost by evaporation was higher under NT (64%) than under RT (56%) and CT (44%). The comparison between measured and simulated soil water loss showed that the practice of tillage decreased soil water conservation in the short term. The long-term analysis of the soil water balance showed that, in fallow periods with a wet autumn during the first year of fallow, the soil water loss measured under CT and RT was moderately greater than that predicted by the model.
DescriptionThe definitive version is available at: http://www.sciencedirect.com/science/journal/01671987
URIhttp://hdl.handle.net/10261/5030
DOI10.1016/j.still.2006.03.012
ISSN0167-1987
Appears in Collections:(EEAD) Artículos
Files in This Item:
File Description SizeFormat 
Moret_STR_2007.pdf443,57 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.