English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/4847
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Revised rates for the stellar triple-alpha process from measurement of C-12 nuclear resonances

AutorFynbo, H. O. U.; Diget, C. Aa.; Bergmann, U. C.; García Borge, María José ; Cederkäll, Joakim; Dendooven, Peter; Fraile, Luis M. ; Franchoo, Serge; Fedosseev, Valentin N.; Fulton, Brian R.; Huang, Wenxue; Huikari, Jussi; Jeppesen, Henrik B.; Jokinen, Ari S.; Jones, Peter; Jonson, Björn; Köster, Ulli; Langanke, Karlheinz; Meister, Mikael; Nilsson, Thomas; Nyman, Göran; Prezado, Yolanda ; Riisager, Karsten; Rinta-Antila, Sami; Tengblad, Olof ; Turrión, Manuela ; Wang, Youbao; Weissman, Leonid; Wilhelmsen, Katarina; Äystö, Juha
Fecha de publicación13-ene-2005
EditorNature Publishing Group
CitaciónNature 433(7022): 136-139 (2005)
ResumenIn the centres of stars where the temperature is high enough, three α-particles (helium nuclei) are able to combine to form C-12 because of a resonant reaction leading to a nuclear excited state. (Stars with masses greater than ~ 0.5 times that of the Sun will at some point in their lives have a central temperature high enough for this reaction to proceed). Although the reaction rate is of critical significance for determining elemental abundances in the Universe, and for determining the size of the iron core of a star just before it goes supernova, it has hitherto been insufficiently determined. Here we report a measurement of the inverse process, where a C-12 nucleus decays to three α-particles. We find a dominant resonance at an energy of ~ 11 MeV, but do not confirm the presence of a resonance at 9.1 MeV (ref. 3). We show that interference between two resonances has important effects on our measured spectrum. Using these data, we calculate the triple-α rate for temperatures from 10^7 K to 10^10 K and find significant deviations from the standard rates. Our rate below ~ 5 x 10^7 K is higher than the previous standard, implying that the critical amounts of carbon that catalysed hydrogen burning in the first stars are produced twice as fast as previously believed. At temperatures above 10^9 K, our rate is much less, which modifies predicted nucleosynthesis in supernovae.
Descripción4 pages, 3 figures.-- PMID: 15650733 [PubMed].
Versión del editorhttp://dx.doi.org/10.1038/nature03219
ISSN0028-0836 (Print)
Referencias1476-4687 (Online)
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.