English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/48061
Título

Stable droplets and growth laws close to the modulational instability of a domain wall

AutorGomila, Damià ; Colet, Pere ; Giorgi, Gian Luca ; San Miguel, Maxi
Fecha de publicación17-oct-2001
EditorAmerican Physical Society
CitaciónPhysical Review Letters 87: 194101 (1-4) (2001)
ResumenWe consider the curvature driven dynamics of a domain wall separating two equivalent states in systems displaying a modulational instability of a flat front. An amplitude equation for the dynamics of the curvature close to the bifurcation point from growing to shrinking circular droplets is derived. We predict the existence of stable droplets with a radius R that diverges at the bifurcation point, where a curvature driven growth law R t t 1 4 is obtained. Our general analytical predictions, which are valid for a wide variety of systems including models of nonlinear optical cavities and reaction-diffusion systems, are illustrated in the parametrically driven complex Ginzburg-Landau equation.
DescripciónPACS numbers: 47.52. +j, 42.65.Sf, 47.20.Ky, 82.40.Bj
Versión del editorhttp://dx.doi.org/10.1103/PhysRevLett.87.194101
URIhttp://hdl.handle.net/10261/48061
DOI10.1103/PhysRevLett.87.194101
ISSN0031-9007
Aparece en las colecciones: (IMEDEA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Stable_droplets.pdf130,53 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.