English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/47830
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Genetic analysis of transvection effects involving cis-regulatory elements of the Drosophila Ultrabithorax gene.

AuthorsMicol, J. L.; Castelli-Gair Hombría, James ; García-Bellido, Antonio
Issue Date1990
PublisherGenetics Society of America
CitationGenetics 126(2):365-373 (1990)
AbstractThe Ultrabithorax (Ubx) gene of Drosophila melanogaster contains two functionally distinguishable regions: the protein-coding Ubx transcription unit and, upstream of it, the transcribed but nonprotein-coding bxd region. Numerous recessive, partial loss-of-function mutations which appear to be regulatory mutations map within the bxd region and within the introns of the Ubx transcription unit. In addition, mutations within the Ubx unit exons are known and most of these behave as null alleles. Ubx1 is one such allele. We have confirmed that, although the Ubx1 allele does not produce detectable Ubx proteins (UBX), it does retain other genetic functions detectable by their effects on the expression of a paired, homologous Ubx allele, i.e., by transvection. We have extended previous analyses made by E. B. Lewis by mapping the critical elements of the Ubx gene which participate in transvection effects. Our results show that the Ubx1 allele retains wild-type functions whose effectiveness can be reduced (1) by additional cis mutations in the bxd region or in introns of the Ubx transcription unit, as well as (2) by rearrangements disturbing pairing between homologous Ubx genes. Our results suggest that those remnant functions in Ubx1 are able to modulate the activity of the allele located in the homologous chromosome. We discuss the normal cis regulatory role of these functions involved in trans interactions between homologous Ubx genes, as well as the implications of our results for the current models on transvection.
Publisher version (URL)http://www.genetics.org/content/126/2/365.full.pdf
Appears in Collections:(CBM) Artículos
Files in This Item:
File Description SizeFormat 
Embargo.pdf21,67 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.