Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/47670
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Transient Magnetic Birefringence for determining magnetic nanoparticle diameters in dense, highly light scattering media

AutorKöber, Mariana; Ruíz del Árbol, María; Grazú, Valeria CSIC ORCID; Fuente, Jesús M. de la CSIC ORCID; Luna, Mónica CSIC ORCID; Briones Fernández-Pola, Fernando CSIC
DirectorPostprint
Palabras claveCondensed matter
Instrumentation and measurement
Medical physics
Biological physics
Nanoscale science and low-D systems
Electrical, magnetic and optical
Fecha de publicación28-mar-2012
EditorInstitute of Physics Publishing
CitaciónNanotechnology 23(15): 155501 (2012)
ResumenThe increasing use of biofunctionalized magnetic nanoparticles in biomedical applications calls for further development of characterization tools that allow for determining the interactions of the nanoparticles with the biological medium in situ. In cell-incubating conditions, for example, nanoparticles may aggregate and serum proteins adsorb on the particles, altering the nanoparticles' performance and their interaction with cell membranes. In this work we show that the aggregation of spherical magnetite nanoparticles can be detected with high sensitivity in dense, highly light scattering media by making use of magnetically induced birefringence. Moreover, the hydrodynamic particle diameter distribution of anisometric nanoparticle aggregates can be determined directly in these media by monitoring the relaxation time of the magnetically induced birefringence. As a proof of concept, we performed measurements on nanoparticles included in an agarose gel, which scatters light in a similar way as a more complex biological medium but where particle–matrix interactions are weak. Magnetite nanoparticles were separated by agarose gel electrophoresis and the hydrodynamic diameter distribution was determined in situ. For the different particle functionalizations and agarose concentrations tested, we could show that gel electrophoresis did not yield a complete separation of monomers and small aggregates, and that the electrophoretic mobility of the aggregates decreased linearly with the hydrodynamic diameter. Furthermore, the rotational particle diffusion was not clearly affected by nanoparticle–gel interactions. The possibility to detect nanoparticle aggregates and their hydrodynamic diameters in complex scattering media like cell tissue makes transient magnetic birefringence an interesting technique for biological applications.
DescripciónMariana Köber... et al.-- PACS :78.20.Ls Magnetooptical effects 61.46.Df Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots) 75.75.+a Magnetic properties of nanostructures 87.85.Qr Nanotechnologies-design 78.67.Bf Nanocrystals and nanoparticles 87.80.-y Biophysical techniques (research methods)
Versión del editorhttp://dx.doi.org/10.1088/0957-4484/23/15/155501
URIhttp://hdl.handle.net/10261/47670
DOI10.1088/0957-4484/23/15/155501
ISSN0957-4484
E-ISSN1361-6528
Aparece en las colecciones: (IMN-CNM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Manuscript_Koeber.pdf424,16 kBAdobe PDFVista previa
Visualizar/Abrir
SupplementaryData_Koeber.pdf416,56 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

10
checked on 21-abr-2024

WEB OF SCIENCETM
Citations

11
checked on 22-feb-2024

Page view(s)

311
checked on 24-abr-2024

Download(s)

482
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.