English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/47632
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Smooth double critical state theory for type-II superconductors

AutorRuiz, H. S.; Badía-Majós, A.
Fecha de publicaciónoct-2010
EditorInstitute of Physics Publishing
CitaciónSuperconductor Science and Technology 23(10): 105007 (2010)
ResumenSeveral aspects of the general theory for the critical states of a vortex lattice and the magnetic flux dynamics in type-II superconductors are examined by a direct variational optimization method and widespread physical principles. Our method allows us to unify a number of conventional models describing the complex vortex configurations in the critical state regime. Special attention is given to the discussion of the relation between the flux line cutting mechanism and the depinning threshold limitation. This is done by using a smooth double critical state concept which incorporates the so-called isotropic, elliptical, T and CT models as well-defined limits of our general treatment. Starting from different initial configurations for a superconducting slab in a 3D magnetic field, we show that the predictions of the theory range from the collapse to zero of transverse magnetic moments in the isotropic model, to nearly force-free configurations in which paramagnetic values can arbitrarily increase with the applied field for magnetically anisotropic current–voltage laws. Noteworthily, the differences between the several model predictions are minimal for the low applied field regime.
Descripción8 páginas, 4 figuras.-- El pdf del artículo es la versión pre-print: arXiv:1005.5540v1
Versión del editorhttp://dx.doi.org/10.1088/0953-2048/23/10/105007
Aparece en las colecciones: (ICMA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1005.5540v1.pdf596,02 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.