English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/47059
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Universal functions and exactly solvable chaotic systems

AutorGarcía-Nustes, M. A.; Hernández-García, Emilio ; Gonzalez, Jorge A.
Fecha de publicación7-nov-2008
ResumenA universal differential equation is a nontrivial differential equation the solutions of which approximate to arbitrary accuracy any continuous function on any interval of the real line. On the other hand, there has been much interest in exactly solvable chaotic maps. An important problem is to generalize these results to continuous systems. Theoretical analysis would allow us to prove theorems about these systems and predict new phenomena. In the present paper we discuss the concept of universal functions and their relevance to the theory of universal differential equations. We present a connection between universal functions and solutions to chaotic systems. We will show the statistical independence between $X(t)$ and $X(t + \tau)$ (when $\tau$ is not equal to zero) and $X(t)$ is a solution to some chaotic systems. We will construct universal functions that behave as delta-correlated noise. We will construct universal dynamical systems with truly noisy solutions. We will discuss physically realizable dynamical systems with universal-like properties.
Descripciónpre-print: arXiv:0811.1179v1
Versión del editorhttp://arxiv.org/abs/0811.1179
Aparece en las colecciones: (IFISC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
0811.1179v1.pdf415,28 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.