English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/47029
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Site Energies of Active and Inactive Pheophytins in the Reaction Center of Photosystem II from Chlamydomonas Reinhardtii

AuthorsAcharya, Khem; Neupane, Bhanu; Zazubovich, Valter; Sayre, R. T.; Picorel Castaño, Rafael CSIC ORCID ; Seibert, Michael; Jankowiak, Ryszard J.
Issue Date2012
PublisherAmerican Chemical Society
CitationAcharya K, Neupane B, Zazubovich V, Sayre RT, Picorel R, Seibert M, Jankowiak R. Site Energies of Active and Inactive Pheophytins in the Reaction Center of Photosystem II from Chlamydomonas Reinhardtii. Journal of Physical Chemistry B 116 (12): 3890-3899 (2012)
AbstractIt is widely accepted that the primary electron acceptor in various Photosystem II (PSII) reaction centers (RCs) is pheophytin a (Pheo a) within the D1 protein (PheoD1), while PheoD2 (within the D2 protein) is photochemically inactive. The Pheo site energies, however, have remained elusive, due to inherent spectral congestion. While most researchers over the last two decades assigned the Qy-states of PheoD1 and PheoD2 bands near 678–684 nm and 668–672 nm, respectively, recent modeling [Raszewski et al. Biophys. J. 2005, 88, 986–998; Cox et al. J. Phys. Chem. B 2009, 113, 12364–12374] of the electronic structure of the PSII RC reversed the location of the active and inactive Pheos, suggesting that the mean site energy of PheoD1 is near 672 nm, whereas PheoD2 (~677.5 nm) and ChlD1 (~680 nm) have the lowest energies (i.e., the PheoD2-dominated exciton is the lowest excited state). In contrast, chemical pigment exchange experiments on isolated RCs suggested that both pheophytins have their Qy absorption maxima at 676–680 nm [Germano et al. Biochem. 2001, 40, 11472–11482; Germano et al. Biophys. J. 2004, 86, 1664–1672]. To provide more insight into the site energies of both PheoD1 and PheoD2 (including the corresponding Qx transitions, which are often claimed to be degenerate at 543 nm) and to attest that the above two assignments are most likely incorrect, we studied a large number of isolated RC preparations from spinach and wild-type Chlamydomonas reinhardtii (at different levels of intactness) as well as the Chlamydomonas reinhardtii mutant (D2-L209H), in which the active branch PheoD1 is genetically replaced with chlorophyll a (Chl a). We show that the Qx-/Qy-region site-energies of PheoD1 and PheoD2 are ~545/680 nm and ~541.5/670 nm, respectively, in good agreement with our previous assignment [Jankowiak et al. J. Phys. Chem. B 2002, 106, 8803–8814]. The latter values should be used to model excitonic structure and excitation energy transfer dynamics of the PSII RCs.
Description31 Pags. The definitive version is available at: http://pubs.acs.org/journal/jpcbfk
Publisher version (URL)http://dx.doi.org/10.1021/jp3007624
Appears in Collections:(EEAD) Artículos
Files in This Item:
File Description SizeFormat 
PicorelR_JPhysChem_2012.pdf218,13 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.