English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/45956
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Inter- and intra-specific differences in euryhalinity determine the spatial distribution of mysids in a temperate European estuary

AuthorsVilas, César; Drake, Pilar ; Pascual, E.
Mesopodopsis slabberi
Neomysis integer
Rhopalophthalmus tartessicus
Spatial distribution
Issue Date3-Jan-2009
CitationJournal of Experimental Marine Biology and Ecology 369(2): 165-176 (2009)
AbstractMysids are an important component of estuarine hyperbenthos and a major prey item in the food web of many estuaries. Understanding the abiotic and biotic mechanisms determining mysid distributions is therefore important to comprehend the general processes structuring estuarine communities. We carried out field surveys and exposure-survival experiments for three species of mysids, Neomysis integer Leach Mesopodopsis slabberi van Beneden and Rhopalophthalmus tartessicus Vilas-Fernandez, Drake and Sorbe, to link salinity tolerances of different sex and life stages (adults and juveniles) to their spatial distributions within the Guadalquivir estuary, SW Spain. Despite being euryhaline, the three species of mysids were unevenly distributed along the saline gradient, with salinity being the environmental variable which best explained structure changes in the estuarine mysid assemblage. R. tartessicus remained confined to the outer and more marine part of the estuary and showed a higher temporal variation in its salinity-related distribution (position within the salinity gradient). M. slabberi and N. integer displayed wider estuarine distributions but remained associated with intermediate and low salinities, respectively. We found considerable inter- and intra-specific differences in tolerance to sudden salinity changes: N. integer, and juveniles of M. slabberi and R. tartessicus, showed a high tolerance to sudden salinity changes, whereas adults of M. slabberi and R. tartessicus were only tolerant to salinities close to their isosmotic points. For the less euryhaline species M. slabberi and R. tartessicus acclimation to unfavourable salinities decreased survival after exposure to sudden salinity changes. Both location and strength of the salinity gradient were important factors in determining spatial distribution, either directly to avoid osmotic stress and mortality risk (R. tartessicus and M. slabberi) or indirectly to reduce inter-specific mysid competition (N. integer). We suggest inter- and intra-specific euryhalinity differences determine the spatial distribution of mysids and the specific strategies they use to maintain this spatial structure in a highly variable environment.
Description12 páginas, 5 páginas, 1 tabla.
Publisher version (URL)http://dx.doi.org/10.1016/j.jembe.2008.11.010
Appears in Collections:(ICMAN) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.