English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/45906
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Constraints on fNL from Wilkinson Microwave Anisotropy Probe 7-year data using a neural network classifier

AuthorsCasaponsa, Biuse ; Bridges, M.; Curto, Andrés ; Barreiro, R. Belén ; Hobson, M. P.; Martínez-González, Enrique
KeywordsMethods: data analysis
Cosmic background radiation
Issue DateSep-2011
PublisherWiley-Blackwell
Royal Astronomical Society
CitationMonthly Notices of the Royal Astronomical Society 41681): 457-464 (2011)
AbstractWe present a multiclass neural network (NN) classifier as a method to measure non-Gaussianity, characterized by the local non-linear coupling parameter fNL, in maps of the cosmic microwave background (CMB) radiation. The classifier is trained on simulated non-Gaussian CMB maps with a range of known fNL values by providing it with wavelet coefficients of the maps; we consider both the HEALPix wavelet (HW) and the spherical Mexican hat wavelet (SMHW). When applied to simulated test maps, the NN classifier produces results in very good agreement with those obtained using standard χ2 minimization. The standard deviations of the fNL estimates for Wilkinson Microwave Anisotropy Probe1 like simulations were σ= 22 and 33 for the SMHW and the HW, respectively, which are extremely close to those obtained using classical statistical methods in Curto et al. and Casaponsa et al. Moreover, the NN classifier does not require the inversion of a large covariance matrix, thus avoiding any need to regularize the matrix when it is not directly invertible, and is considerably faster.
Description8 páginas, 6 figuras, 1 tabla.-- El Pdf del artículo es la versión pre-print: arXiv:1105.6116v2
Publisher version (URL)http://dx.doi.org/10.1111/j.1365-2966.2011.19053.x
URIhttp://hdl.handle.net/10261/45906
DOI10.1111/j.1365-2966.2011.19053.x
ISSN0035-8711
E-ISSN1365-2966
Appears in Collections:(IFCA) Artículos
Files in This Item:
File Description SizeFormat 
1105.6116v2.pdf254,2 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.