English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/45163
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Implications of Extreme Life Span in Clonal Organisms: Millenary Clones in Meadows of the Threatened Seagrass Posidonia oceanica

AuthorsArnaud-Haond, Sophie; Duarte, Carlos M. ; Díaz-Almela, Elena ; Marbà, Núria ; Sintes, Tomàs ; Serrao, Ester Álvares
Issue Date1-Feb-2012
PublisherPublic Library of Science
CitationPLoS ONE 7(2): e30454 (2012)
AbstractThe maximum size and age that clonal organisms can reach remains poorly known, although we do know that the largest natural clones can extend over hundreds or thousands of metres and potentially live for centuries. We made a review of findings to date, which reveal that the maximum clone age and size estimates reported in the literature are typically limited by the scale of sampling, and may grossly underestimate the maximum age and size of clonal organisms. A case study presented here shows the occurrence of clones of slow-growing marine angiosperm Posidonia oceanica at spatial scales ranging from metres to hundreds of kilometres, using microsatellites on 1544 sampling units from a total of 40 locations across the Mediterranean Sea. This analysis revealed the presence, with a prevalence of 3.5 to 8.9%, of very large clones spreading over one to several (up to 15) kilometres at the different locations. Using estimates from field studies and models of the clonal growth of P. oceanica, we estimated these large clones to be hundreds to thousands of years old, suggesting the evolution of general purpose genotypes with large phenotypic plasticity in this species. These results, obtained combining genetics, demography and model-based calculations, question present knowledge and understanding of the spreading capacity and life span of plant clones. These findings call for further research on these life history traits associated with clonality, considering their possible ecological and evolutionary implications.
Publisher version (URL)http://dx.doi.org/10.1371/journal.pone.0030454
URIhttp://hdl.handle.net/10261/45163
DOI10.1371/journal.pone.0030454
ISSN1932-6203
Appears in Collections:(IFISC) Artículos
(IMEDEA) Artículos
Files in This Item:
File Description SizeFormat 
journal.pone.0030454.pdf443,88 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.