English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/44961
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Title

Effect of glycation on sodium caseinate-stabilized emulsions obtained by ultrasound

AuthorsCorzo-Martínez, Marta ; Soria, Ana C. ; Villamiel, Mar ; Olano, Agustín ; Harte, Federico M.; Moreno, F. Javier
KeywordsEmulsion
Maillard reaction
Sodium caseinate
Ultrasound
Issue DateJan-2011
PublisherAmerican Dairy Science Association
Elsevier
CitationJournal of Dairy Science 94(1): 51-58 (2011)
AbstractThis work explores the potential of high-intensity ultrasound to produce fine-dispersion, long-time-stable, oil-in-water emulsions prepared with native and glycated bovine sodium caseinate (SC). Regardless the ultrasound amplitude and time assayed, the sonicated emulsions of native SC at 0.5 mg/mL had much higher emulsifying activity indexes compared with those emulsions formed by Ultra-Turrax (IKA Werke GmbH & Co., Staufen, Germany) homogenization. Nevertheless, the native SC emulsions were very unstable despite the optimization of parameters such as protein concentration, amplitude of ultrasound wave, and sonication time by using a Box-Behnken design. Early glycation of SC with either galactose, lactose, or 10 kDa dextran substantially improved both emulsifying activity and the stability, whereas at advanced stages of glycation, SC emulsions showed notably reduced emulsifying properties, likely because extensive glycation of SC promoted its polymerization mainly through covalent cross-linking, as was demonstrated by particle size measurements. The increase in particle diameter of glycoconjugates likely affected the diffusion of SC from bulk to the oil–water interface and slowed the reorientation process of the protein at the interface. These findings show that the combined effect of early-stage glycation of SC and high-intensity ultrasound as an emergent technique to form emulsions has the potential to provide improved emulsions that could be used in several food applications.
Description5 páginas, 3 figuras, 4 tablas.
Publisher version (URL)http://dx.doi.org/10.3168/jds.2010-3551
URIhttp://hdl.handle.net/10261/44961
DOI10.3168/jds.2010-3551
ISSN0022-0302
E-ISSN1525-3198
Appears in Collections:(IFI) Artículos
(CIAL) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.