English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/44798
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Seasonal ecosystem variability in remote mountain lakes. Implications for detecting climatic signals in sediment records.

AuthorsCatalán, Jordi; Ventura, Marc ; Brancelj, A.; Granados, I.; Thies, Hansjörg; Nickus, Ulrike; Korhola, A.; Lotter, A. F.; Barbieri, A.; Stuchlík, Evzen; Lien, P.; Bitusik, P.; Buchaca, Teresa ; Camarero, Lluís ; Goudsmit, G. H.; Kopacek, J.; Lemcke, G.; Livingstone, D. M.; Müller, B.; Rautio, M.; Sisko, M.; Sorvari, S.; Sporka, F.; Strunecky, O.; Toro, M.
Major chemicals
Alpine lakes
Thermal regime
Issue Date2002
CitationJournal of Paleolimnology 28 : 25-46 (2002)
AbstractWeather variation and climate fluctuations are the main sources of ecosystem variability in remote mountain lakes. Here we describe the main patterns of seasonal variability in the ecosystems of nine lakes in Europe, and discuss the implications for recording climatic features in their sediments. Despite the diversity in latitude and size, the lakes showed a number of common features. They were ice-covered between 5–9 months, and all but one were dimictic. This particular lake was long and shallow, and wind action episodically mixed the water column throughout the ice-free period. All lakes showed characteristic oxygen depletion during the ice-covered-period, which was greater in the most productive lakes. Two types of lakes were distinguished according to the number of production peaks during the ice-free season. Lakes with longer summer stratification tended to have two productive periods: one at the onset of stratification, and the other during the autumn overturn. Lakes with shorter stratification had a single peak during the ice-free period. All lakes presented deep chlorophyll maxima during summer stratification, and subsurface chlorophyll maxima beneath the ice. Phosphorus limitation was common to all lakes, since nitrogen compounds were significantly more abundant than the requirements for the primary production observed. The major chemical components present in the lakes showed a short but extreme dilution during thawing. Certain lake features may favour the recording of particular climatic fluctuations, for instance: lakes with two distinct productive periods, climatic fluctuations in spring or autumn (e.g., through chrysophycean cysts); lakes with higher oxygen consumption, climatic factors affecting the duration of the ice-cover (e.g., through low-oxygen tolerant chironomids); lakes with higher water retention time; changes in atmospheric deposition (e.g., through carbon or pigment burial); lakes with longer stratification, air temperature changes during summer and autumn (e.g., through all epilimnetic species).
Description22 páginas, 12 figuras, 20 tablas.
Publisher version (URL)http://dx.doi.org/10.1023/A:1020315817235
Appears in Collections:(CEAB) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.