English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/4405
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
 |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Simulation of Maize Grain Yield Variability within a Surface-Irrigated Field
Autor : Cavero Campo, José ; Playán Jubillar, Enrique ; Playán Jubillar, Enrique ; Zapata Ruiz, Nery ; Zapata Ruiz, Nery ; Faci González, José María
Fecha de publicación : jul-2001
Editor: American Society of Agronomy
Citación : Agronomy Journal 93(4): 773-782 (2001)
Resumen: Spatial variability of crop yield within a surface-irrigated field is related to spatial variability of available water due to nonuniform irrigation and soil characteristics, among other factors (e.g., soil fertility). The infiltrated depth at each location within the field can be estimated by measurements of opportunity time and infiltration rate or simulated with irrigation models. We investigated the use of the crop growth model EPICphase to simulate the spatial variability of maize (Zea mays L.) grain yield within a level basin using estimated or simulated (with the irrigation model B2D) infiltrated depth. The relevance of the spatial variability of infiltration rate, opportunity time, and soil surface elevation in the simulation of grain yield spatial variability was also investigated. The measured maize grain yields at 73 locations within the level basin, ranging from 3.16 to 11.54 t ha-1 (SD = 1.79 t ha-1), were used for comparison. Estimated infiltrated depth considering uniform infiltration rate resulted in poor simulation of the spatial variability of grain yield [SD = 0.59 t ha-1, root mean square error (RMSE) = 1.98 t ha-1]. Simulated infiltrated depth with the irrigation model considering uniform infiltration rate and soil surface elevation resulted in grain yield simulations with lower variability than measured (SD = 0.64 t ha-1, RMSE = 1.58 t ha-1). Introducing both sources of spatial variability in the irrigation model resulted in the best simulation of grain yield spatial variability (SD = 1.68 t ha-1, RMSE = 1.16 t ha-1; regression of calculated vs. measured yields: slope = 0.74, r2 = 0.56).
Versión del editor: http://dx.doi.org/10.2134/agronj2001.934773x
URI : http://hdl.handle.net/10261/4405
DOI: 10.2134/agronj2001.934773x
ISSN: 0002-1962
Aparece en las colecciones: (EEAD) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.