English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/43659
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Topological reversibility and causality in feed-forward networks

AutorCorominas-Murtra, Bernat; Rodríguez-Caso, Carlos ; Goñi, Joaquín; Solé, Ricard V.
Fecha de publicaciónnov-2010
EditorInstitute of Physics Publishing
CitaciónNew Journal of Physics 12: 113051 (2010)
ResumenSystems whose organization displays causal asymmetry constraints, from evolutionary trees to river basins or transport networks, can often be described in terms of directed paths on a discrete set of arbitrary units including states in state spaces, feed-forward neural nets, the evolutionary history of a given collection of events or the chart of computational states visited along a complex computation. Such a set of paths defines a feed-forward, acyclic network. A key problem associated with these systems involves characterizing their intrinsic degree of path reversibility: given an end node in the graph, what is the uncertainty of recovering the process backwards until the origin? Here, we propose a novel concept, topological reversibility, which is a measure of the complexity of the net that rigorously weights such uncertainty in path dependency, quantifying the minimum amount of information required to successfully reverse a causal path. Within the proposed framework, we also analytically characterize limit cases for both topologically reversible and maximally entropic structures. The relevance of these measures within the context of evolutionary dynamics is highlighted.
Descripción19 páginas, 4 figuras.
Versión del editorhttp://dx.doi.org/10.1088/1367-2630/12/11/113051
Aparece en las colecciones: (IBE) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.