English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/43568
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor

AuthorsMarco-Urrea, Ernest; Radjenovic, Jelena ; Caminal, Glòria ; Vicent, Teresa; Barceló, Damià ; Petrovic, Mira
KeywordsTrametes versicolor
Hydroxyl radical
Clofibric acid
Issue Date2010
CitationWater Research
AbstractBiological advanced oxidation of the pharmaceuticals clofibric acid (CA), carbamazepine (CBZP), atenolol (ATL) and propranolol (PPL) is reported for the first time. Extracellular oxidizing species were produced through a quinone redox cycling mechanism catalyzed by an intracellular quinone reductase and any of the ligninolytic enzymes of Trametes versicolor after addition of the lignin-derived quinone 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe3+-oxalate in the medium. Time-course experiments with approximately 10 mg L−1 of initial pharmaceutical concentration resulted in percent degradations above 80% after 6 h of incubation. Oxidation of pharmaceuticals was only observed under DBQ redox cycling conditions. A similar degradation pattern was observed when CBZP was added at the environmentally relevant concentration of 50 μg L−1. Depletion of DBQ due to the attack of oxidizing agents was assumed to be the main limiting factor of pharmaceutical degradation. The main degradation products, that resulted to be pharmaceutical hydroxylated derivatives, were structurally elucidated. The detected 4- and 7-hydroxycarbamazepine intermediates of CBZP degradation were not reported to date. Total disappearance of intermediates was observed in all the experiments at the end of the incubation period.
Publisher version (URL)http://dx.doi.org/10.1016/j.watres.2009.09.049
Appears in Collections:(IDAEA) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.