English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/42685
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Gravitational and tectonic forces controlling postcollisional deformation and the present-day stress field of the Alps: Constraints from numerical modeling

AuthorsJimenez-Munt, Ivone ; García-Castellanos, Daniel ; Negredo, Ana M. ; Platt, John P.
Gravitational potential energy
Surface mass transport
Issue DateOct-2005
PublisherAmerican Geophysical Union
CitationTectonics (24) : TC5009 (2005)
AbstractWe perform numerical modeling to investigate the mechanisms leading to the postcollisional tectonic evolution of the Alps. We model the lithospheric deformation as a viscous thin sheet with vertically averaged rheology and coupled with surface mass transport. The applied kinematic boundary conditions simulate the convergence between the Adria indenter and the European foreland during the last 35 Myr. Model predictions of elevation, lithospheric structure, erosion/sedimentation pattern and vertical axis rotation are compared with observations of the planform shape of the chain, topography, crustal thickness, distribution of rock exhumation and sediment thickness, and paleomagnetic rotations. Thickening of the lithosphere in the Alpine region is shown to be highly sensitive to the assumed viscosity law, to the strength contrasts between the different regions and to the surface mass transport. Modeling results indicate that the large-scale deformation of the Alps during the postcollisional phase is mainly controlled by accommodation of convergence in a weak orogenic zone caught between a nearly rigid Adria plate and a strong European foreland. Modeling of the present-day stress field shows that (1) the present rotation of Adria is responsible for the change of extension direction from strike-perpendicular in the western Alps to strike-parallel in the east and (2) the strike-perpendicular extension observed in the western Alps is likely due to lateral variations of gravitational potential energy. The results suggest a NNE shift of about 700 km of the Euler pole of Adria relative to Europe from its mean position during postcollisional deformation to the present day.
Publisher version (URL)http://www.agu.org/journals/tc/tc0505/2004TC001754/
Appears in Collections:(ICTJA) Artículos
Files in This Item:
File Description SizeFormat 
Jimenez-Munt_Tectonics2005_Alps.pdf1,69 MBAdobe PDFThumbnail
Show full item record

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.