English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/41138
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorÁlvarez-Vázquez, Enrique-
dc.contributor.authorOrtín Miguel, Tomás-
dc.contributor.authorOsorio, M. A. R.-
dc.date.accessioned2011-10-14T12:58:27Z-
dc.date.available2011-10-14T12:58:27Z-
dc.date.issued1991-
dc.identifier.citationPhysical Review D 43(12): 3990-3997 (1991)es_ES
dc.identifier.issn1550-7998-
dc.identifier.urihttp://hdl.handle.net/10261/41138-
dc.description8 páginas.es_ES
dc.description.abstractUsing an explicit expression for the thermal soliton sector, we compute the would-be divergent terms of the free energy of heterotic strings when a nontrivial homology cycle in the Riemann surface is pinched. Modulo a plausible hypothesis, we find exactly the same critical temperature as in the lowest order. We also make some comments on the validity of our hypothesis. Our result is consistent with recent findings on the constant asymptotic form of the decay width for closed strings.es_ES
dc.description.sponsorshipThis work has been supported by CICYT, Fundacion Banco Exterior, a MEC(Spain)/Fulbright grant, and NSF Grant No. PHY- 87-14654.es_ES
dc.language.isoenges_ES
dc.publisherAmerican Physical Societyes_ES
dc.rightsopenAccesses_ES
dc.titleCritical behavior of heterotic strings to all orders in string perturbation theoryes_ES
dc.typeartículoes_ES
dc.identifier.doihttp://dx.doi.org/10.1103/PhysRevD.43.3990-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1103/PhysRevD.43.3990es_ES
dc.identifier.e-issn1550-2368-
Appears in Collections:(IFT) Artículos
Files in This Item:
File Description SizeFormat 
p3990_1.pdf354,51 kBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.