English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/4065
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorCatani, Stefano-
dc.contributor.authorGleisberg, Tanju-
dc.contributor.authorKrauss, Frank-
dc.contributor.authorRodrigo, Germán-
dc.contributor.authorWinter, Jan-Christopher-
dc.date.accessioned2008-05-07T11:20:52Z-
dc.date.available2008-05-07T11:20:52Z-
dc.date.issued2008-05-07T11:20:52Z-
dc.identifier.urihttp://hdl.handle.net/10261/4065-
dc.description.abstractWe derive a duality relation between one-loop integrals and phase-space integrals emerging from them through single cuts. The duality relation is realized by a modification of the customary +i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem. The duality relation can be applied to generic one-loop quantities in any relativistic, local and unitary field theories. It is suitable for applications to the analytical calculation of one-loop scattering amplitudes, and to the numerical evaluation of cross-sections at next-to-leading order.en_US
dc.format.extent295207 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoengen_US
dc.rightsopenAccessen_US
dc.subjectNLO computationsen_US
dc.subjectQCDen_US
dc.titleFrom loops to trees by-passing Feynman's theoremen_US
dc.typeartículoen_US
dc.description.peerreviewedPeer revieweden_US
Appears in Collections:(IFIC) Artículos
Files in This Item:
File Description SizeFormat 
bypass.pdf288,29 kBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.