English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/39058
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Nanotechnology-based manipulation of dendritic cells for enhanced immunotherapy strategies

AuthorsKlippstein, Rebecca ; Pozo, David
KeywordsAntigen-presenting cells
Dendritic cells
Issue DateAug-2010
CitationNanomedicine: Nanotechnology, Biology and Medicine 6(4): 523-529 (2010)
AbstractDendritic cells (DCs) are potent antigen-presenting cells capable of initiating a primary immune response and possess the ability to activate T cells and stimulate the growth and differentiation of B cells. DCs provide a direct connection between innate and adaptive immune response, and arise from bone marrow precursors that are present in immature forms in peripheral tissues, where they are prepared to capture antigens. DCs migrate from the peripheral tissues to the closest lymph nodes through afferent lymphatic vessels to present the foreign antigens, stimulating T-cell activation and initiating a cellular immune response. Moreover, it is known that DCs have an important role in various diseases and conditions involving the immune system, particularly in cancer and autoimmune disorders. For these reasons, targeting nanoparticles (NPs) to DCs provides a promising strategy for developing an efficient balanced and protective immune response. NPs can modulate the immune response and might be potentially useful as effective vaccine adjuvants for infectious disease and cancer therapy. The objective of this review is to present the latest advances in NP delivery methods targeting DCs, the mechanisms of action, potential effects, and therapeutic results of these systems and their future applications, such as improved vaccination strategies, cancer immunotherapy, and immunomodulatory treatments. [From the Clinical Editor]: Dendritic cells (DCs) are potent antigen-presenting cells capable of initiating a primary immune response and activating T and B cells. The role of DC-s can be considered as a bridge between innate and adaptive immunity. Targeting nanoparticles (NPs) to DCs can modulate the immune response and might be useful as vaccine adjuvants in infectious disease and cancer therapy.
Description7 páginas, 2 figuras, 1 tabla.-- Potential Clinical Relevance.
Publisher version (URL)http://dx.doi.org/10.1016/j.nano.2010.01.001
Appears in Collections:(CABIMER) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.