Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/377042
COMPARTIR / EXPORTAR:
logo OpenAIRE logo OpenAIRE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
logo citeas Ortega‐Martínez, P., Nikkanen, L., Wey, L. T., Florencio, F. J., Allahverdiyeva, Y., & Díaz‐Troya, S. (2024, May 6). Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803. New Phytologist. Wiley. http://doi.org/10.1111/nph.19793
Invitar a revisión por pares abierta logo European Open Science Cloud - EU Node   

Título

Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803

AutorOrtega-Martínez, Pablo CSIC ORCID; Nikkanen, Lauri; Wey, Laura T; Florencio, Francisco J; Allahverdiyeva, Yagut; Díaz-Troya, Sandra CSIC ORCID
FinanciadoresMinisterio de Ciencia, Innovación y Universidades (España)
European Commission
Junta de Andalucía
Novo Nordisk Foundation
Ministerio de Universidades (España)
University of Turku
Palabras clavephotosynthesis
glucose
glycogen
metabolism
cyanobacteria
mixotrophy
photomixotrophy
Tesauro AGROVOCglycogen
Fecha de publicación1-jul-2024
EditorWiley-Liss
CitaciónNew Phytologist 243(1): 162-179(2024)
ResumenSome cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.
DescripciónChemicals and CAS Registry Numbers carbon dioxide 124-38-9, 58561-67-4 glucose 50-99-7, 84778-64-3, 8027-56-3 glucose 1 phosphate adenylyltransferase 9027-71-8 glycogen 9005-79-2 oxygen 7782-44-7 phosphoglucomutase 9001-81-4 Carbon Dioxide Glucose Glucose-1-Phosphate Adenylyltransferase Glycogen Oxygen Phosphoglucomutase Photosystem II Protein Complex
Versión del editorhttps://doi.org/10.1111/nph.19793
URIhttp://hdl.handle.net/10261/377042
DOI10.1111/nph.19793
ISSN1469-8137
E-ISSN0028646X
Licencia de usohttps://creativecommons.org/licenses/by/4.0/
Aparece en las colecciones: (IBVF) Artículos



Mostrar el registro completo

CORE Recommender

Page view(s)

43
checked on 08-jul-2025

Download(s)

3
checked on 08-jul-2025

Google ScholarTM

Check

Altmetric

Altmetric



Este item está licenciado bajo una Licencia Creative Commons Creative Commons