English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/3745
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Analysis of error mechanisms in switched-current Sigma-Delta modulators

AutorRosa, José M. de la ; Pérez-Verdú, Belén ; Medeiro, Fernando ; Río, Rocío del; Rodríguez-Vázquez, Ángel
Palabras claveAnalog-to-digital converters
Sigma-Delta modulators
Switched-current circuits
Fecha de publicación2004
CitaciónAnalog Integrated Circuits and Signal Processing 38(2-3): 175-201 (2004)
ResumenThis paper presents a systematic analysis of the major switched-current (SI) errors and their influence on the performance degradation of ΣΔ Modulators (ΣΔMs). The study is presented in a hierarchical systematic way. First, the physical mechanisms behind SI errors are explained and a precise modeling of the memory cell is derived. Based on this modeling, the analysis is extended to other circuits of higher level in the modulator hierarchy such as integrators and resonators. After that, the study is extended to the modulator level, considering two fundamental architectures: a 2nd-order LowPass ΣΔM (2nd-LPΣΔM) and a 4th-order BandPass ΣΔM (4th-BPΣΔM). The noise shaping degradation caused by the linear part of SI errors is studied in the first part of the paper. This study classifies SI non-idealities in different categories depending on how they modify the zeroes of the quantization noise transfer function. As a result, closed-form expressions are found for the degradation of the signal-to-noise ratio and for the change of the notch frequency position in the case of 4th-BPΣΔMs. The analysis is treated considering both the isolated and the cumulative effect of errors. In the second part of the paper the impact of non-linear errors on the modulator performance is investigated. Closed-form expressions are derived for the third-order harmonic distortion and the third-order intermodulation distortion at the output of the modulator as a function of the different error mechanisms. In addition to the mentioned effects, thermal noise is also considered. The most significant noise sources of SI ΣΔMs are identified and their contributions to the input equivalent noise are calculated. All these analyses have been validated by SPICE electrical simulations at the memory cell level and by time-domain behavioural simulations at the modulator level. As an experimental illustration, measurements taken from a 0.8 μm CMOS SI 4th-BPΣΔM silicon prototype validate our approach.
DescripciónEl pdf del artículo es la versión post-print.
Versión del editorhttp://dx.doi.org/10.1023/B:ALOG.0000011167.24521.82
Aparece en las colecciones: (IMSE-CNM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
AICSP04_postprint.pdf1,96 MBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.