English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/3627
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Using the Average Landmark Vector Method for Robot Homing.

AutorGoldhoorn, Alex ; Ramisa, Arnau; López de Mántaras, Ramón ; Toledo, Ricardo
Palabras claveArtificial Intelligence
Mobile Robot Homing
Average Landmark Vector
Invariant Features
Fecha de publicación2007
EditorIOS Press
CitaciónArtificial Intelligence Research and Development. CCIA'07: 10th International Conference of the ACIA. Andorra, October 25-26. Frontiers in Artificial Intelligence and Applications, Vol. 163. IOS Press. p.p.: 331-338. 2007.
ResumenSeveral methods can be used for a robot to return to a previously visited position. In our approach we use the average landmark vector method to calculate a homing vector which should point the robot to the destination. This approach was tested in a simulated environment, where panoramic projections of features were used. To evaluate the robustness of the method, several parameters of the simulation were changed such as the length of the walls and the number of features, and also several disturbance factors were added to the simulation such as noise and occlusion. The simulated robot performed really well. Randomly removing 50% of the features resulted in a mean of 85% successful runs. Even adding more than 100% fake features did not have any significant result on the performance.
DescripciónThe original publication ia available at http://www.booksonline.iospress.nl/Content/View.aspx?piid=7638
Aparece en las colecciones: (IIIA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CCIA07_FAIA_163.pdf165,11 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.