English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/35880
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Design and characterization of genetically engineered zebrafish aquaporin-3 mutants highly permeable to the cryoprotectant ethylene glycol

AuthorsChauvigné, François ; Lubzens, Esther; Cerdà, Joan
Issue Date8-Apr-2011
PublisherBioMed Central
CitationBMC Biotechnology. 11(1):34 (2011)
AbstractAbstract Background Increasing cell membrane permeability to water and cryoprotectants is critical for the successful cryopreservation of cells with large volumes. Artificial expression of water-selective aquaporins or aquaglyceroporins (GLPs), such as mammalian aquaporin-3 (AQP3), enhances cell permeability to water and cryoprotectants, but it is known that AQP3-mediated water and solute permeation is limited and pH dependent. To exploit further the possibilities of using aquaporins in cryobiology, we investigated the functional properties of zebrafish (Danio rerio) GLPs. Results Water, glycerol, propylene glycol and ethylene glycol permeability of zebrafish Aqp3a, -3b, -7, -9a, -9b, -10a and -10b, and human AQP3, was examined. Expression in Xenopus laevis oocytes indicated that the permeability of DrAqp3a and -3b to ethylene glycol was higher than for glycerol or propylene glycol under isotonic conditions, unlike other zebrafish GLPs and human AQP3, which were more permeable to glycerol. In addition, dose-response experiments and radiolabeled ethylene glycol uptake assays suggested that oocytes expressing DrAqp3b were permeated by this cryoprotectant more efficiently than those expressing AQP3. Water and ethylene glycol transport through DrAqp3a and -3b were, however, highest at pH 8.5 and completely abolished at pH 6.0. Point mutations in the DrAqp3b amino acid sequence rendered two constructs, DrAqp3b-T85A showing higher water and ethylene glycol permeability at neutral and alkaline pH, and DrAqp3b-H53A/G54H/T85A, no longer inhibited at acidic pH but less permeable than the wild type. Finally, calculation of permeability coefficients for ethylene glycol under concentration gradients confirmed that the two DrAqp3b mutants were more permeable than wild-type DrAqp3b and/or AQP3 at neutral pH, resulting in a 2.6- to 4-fold increase in the oocyte intracellular concentration of ethylene glycol. Conclusion By single or triple point mutations in the DrAqp3b amino acid sequence, we constructed one mutant with enhanced ethylene glycol permeability and another with reduced pH sensitivity. The DrAqp3b and the two mutant constructs may be useful for application in cryobiology.
URIhttp://hdl.handle.net/10261/35880
Identifiershttp://dx.doi.org/10.1186/1472-6750-11-34
Appears in Collections:(ICM) Artículos
(CRAG) Artículos
Files in This Item:
File Description SizeFormat 
1472-6750-11-34.xml134,85 kBXMLView/Open
1472-6750-11-34-S2.PDF220,33 kBAdobe PDFThumbnail
View/Open
1472-6750-11-34-S3.PDF11,12 kBAdobe PDFThumbnail
View/Open
1472-6750-11-34.pdf3,17 MBAdobe PDFThumbnail
View/Open
1472-6750-11-34-S1.PDF175,58 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.