Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/354514
COMPARTIR / EXPORTAR:
logo OpenAIRE logo OpenAIRE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
logo citeas de Francisco, P., Amaro, F., Martín-González, A., Serrano, A., & Gutiérrez, J.-C. (2023, September). Quantitative proteomic analyses of a Pb-adapted Tetrahymena thermophila strain reveal the cellular strategy to Pb(II) stress including lead biomineralization to chloropyromorphite. Science of The Total Environment. Elsevier BV. http://doi.org/10.1016/j.scitotenv.2023.164252
Invitar a revisión por pares abierta logo European Open Science Cloud - EU Node   

Título

Quantitative proteomic analyses of a Pb-adapted Tetrahymena thermophila strain reveal the cellular strategy to Pb(II) stress including lead biomineralization to chloropyromorphite

Autorde Francisco, Patricia; Amaro, Francisco; Martín-González, Ana; Serrano, Aurelio CSIC ORCID ; Gutiérrez, Juan-Carlos
FinanciadoresMinisterio de Economía y Competitividad (España)
Palabras claveChloropyromorphite
Metallothioneins
Oxidative stress
Proteomic
Tetrahymena thermophila
Vesicular traffic
Fecha de publicación15-sep-2023
EditorElsevier
CitaciónScience of the Total Environment 891: 16452 (2023)
ResumenA strain of the protozoan ciliate Tetrahymena thermophila adapted to increasing Pb(II) concentrations over two years has shown that one of the resistance mechanisms to this extreme metal stress is the lead biomineralization to chloropyromorphite, one of the most stable minerals in the earth's crust. Several techniques such as microanalysis coupled to transmission and scanning electron microscopy (X-Ray Energy Disperse Spectroscopy), fluorescence microscopy and X-ray power diffraction analysis have revealed the presence of chloropyromorphite as crystalline aggregates of nano-globular structure, together with the presence of other secondary lead minerals. This is the first time that the existence of this type of biomineralization in a ciliate protozoan is described. The Pb(II) bioremediation capacity of this strain has shown that it can remove >90 % of the toxic soluble lead from the medium. A quantitative proteomic analysis of this strain has revealed the main molecular-physiological elements involved in adaptation to Pb(II) stress: increased activity of proteolytic systems against lead proteotoxicity, occurrence of metallothioneins to immobilize Pb(II) ions, antioxidant enzymes to mitigate oxidative stress, and an intense vesicular trafficking presumably involved in the formation of vacuoles where pyromorphite accumulates and is subsequently excreted, together with an enhanced energy metabolism. As a conclusion, all these results have been compiled into an integrated model that could explain the eukaryotic cellular response to extreme lead stress.
Versión del editorhttps://doi.org/10.1016/j.scitotenv.2023.164252
URIhttp://hdl.handle.net/10261/354514
DOI10.1016/j.scitotenv.2023.164252
ISSN0048-9697
E-ISSN1879-1026
Licencia de usohttps://creativecommons.org/licenses/by-nc-nd/4.0/
Aparece en las colecciones: (IBVF) Artículos



Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

2
checked on 14-nov-2024

SCOPUSTM   
Citations

3
checked on 17-dic-2024

Page view(s)

48
checked on 05-ago-2025

Download(s)

29
checked on 05-ago-2025

Google ScholarTM

Check

Altmetric

Altmetric



Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons