Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/352255
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invite to open peer review
Title

Connecting molecular biomarkers, mineralogical composition, and microbial diversity from Mars analog lava tubes

AuthorsPalma, Vera; González Pimentel, José L.; Jiménez Morillo, N. T. CSIC ORCID; Sauro, Francesco; Gutiérrez Patricio, S.; Rosa Arranz, José M. de la; Tomasi, Ilaria; Massironi, M.; Onac, Bogdan P.; Tiago, I.; González-Pérez, José Antonio CSIC ORCID ; Laiz Trobajo, L. CSIC ORCID; Caldeira, Ana Teresa; Cubero, Beatriz CSIC ; Miller, A. Z. CSIC ORCID
KeywordsVolcanic caves
Speleothems
Geomicrobiology
Biosignatures
Biomarkers
Organic matter
Subsurface microbial communities
Biomineralization
Issue Date25-Feb-2024
PublisherElsevier
CitationScience of The Total Environment 913: 169583 (2024)
AbstractLanzarote (Canary Islands, Spain) is one of the best terrestrial analogs to Martian volcanology. Particularly, Lanzarote lava tubes may offer access to recognizably preserved chemical and morphological biosignatures valuable for astrobiology. By combining microbiological, mineralogical, and organic geochemistry tools, an in-depth characterization of speleothems and associated microbial communities in lava tubes of Lanzarote is provided. The aim is to untangle the underlying factors influencing microbial colonization in Earth's subsurface to gain insight into the possibility of similar subsurface microbial habitats on Mars and to identify biosignatures preserved in lava tubes unequivocally. The microbial communities with relevant representativeness comprise chemoorganotrophic, halophiles, and/or halotolerant bacteria that have evolved as a result of the surrounding oceanic environmental conditions. Many of these bacteria have a fundamental role in reshaping cave deposits due to their carbonatogenic ability, leaving behind an organic record that can provide evidence of past or present life. Based on functional profiling, we infer that Crossiella is involved in fluorapatite precipitation via urea hydrolysis and propose its Ca-rich precipitates as compelling biosignatures valuable for astrobiology. In this sense, analytical pyrolysis, stable isotope analysis, and chemometrics were conducted to characterize the complex organic fraction preserved in the speleothems and find relationships among organic families, microbial taxa, and precipitated minerals. We relate organic compounds with subsurface microbial taxa, showing that organic families drive the microbiota of Lanzarote lava tubes. Our data indicate that bacterial communities are important contributors to biomarker records in volcanic-hosted speleothems. Within them, the lipid fraction primarily consists of low molecular weight n-alkanes, α-alkenes, and branched-alkenes, providing further evidence that microorganisms serve as the origin of organic matter in these formations. The ongoing research in Lanzarote's lava tubes will help develop protocols, routines, and predictive models that could provide guidance on choosing locations and methodologies for searching potential biosignatures on Mars.
Description18 páginas.- 7 figuras.- 3 tablas.- referencias.- Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2023.169583
Publisher version (URL)http://hdl.handle.net/10.1016/j.scitotenv.2023.169583
URIhttp://hdl.handle.net/10261/352255
DOI10.1016/j.scitotenv.2023.169583
ISSN0048-9697
E-ISSN1879-1026
Appears in Collections:(IRNAS) Artículos
(IGEO) Artículos

Files in This Item:
File Description SizeFormat
1-s2.0-S004896972308213X-mainext.pdf6,93 MBAdobe PDFView/Open
Show full item record

CORE Recommender

SCOPUSTM   
Citations

2
checked on May 3, 2024

Page view(s)

977
checked on May 18, 2024

Download(s)

16
checked on May 18, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons