Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/3506
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Convergent Peripheral Pathways Catalyze Initial Glucose Catabolism in Pseudomonas putida: Genomic and Flux Analysis

AutorCastillo, Teresa del; Ramos, Juan L. CSIC ORCID; Rodríguez-Herva, José J. CSIC ORCID; Fuhrer, Tobias; Sauer, Uwe; Duque, Estrella CSIC ORCID
Fecha de publicaciónjul-2007
EditorAmerican Society for Microbiology
CitaciónJournal of Bacteriology 189(14): 5142–5152 (2007)
ResumenIn this study, we show that glucose catabolism in Pseudomonas putida occurs through the simultaneous operation of three pathways that converge at the level of 6-phosphogluconate, which is metabolized by the Edd and Eda Entner/Doudoroff enzymes to central metabolites. When glucose enters the periplasmic space through specific OprB porins, it can either be internalized into the cytoplasm or be oxidized to gluconate. Glucose is transported to the cytoplasm in a process mediated by an ABC uptake system encoded by open reading frames PP1015 to PP1018 and is then phosphorylated by glucokinase (encoded by the glk gene) and converted by glucose-6-phosphate dehydrogenase (encoded by the zwf genes) to 6-phosphogluconate. Gluconate in the periplasm can be transported into the cytoplasm and subsequently phosphorylated by gluconokinase to 6-phosphogluconate or oxidized to 2-ketogluconate, which is transported to the cytoplasm, and subsequently phosphorylated and reduced to 6-phosphogluconate. In the wild-type strain, glucose was consumed at a rate of around 6 mmol g 1 h 1, which allowed a growth rate of 0.58 h 1 and a biomass yield of 0.44 g/g carbon used. Flux analysis of 13C-labeled glucose revealed that, in the Krebs cycle, most of the oxalacetate fraction was produced by the pyruvate shunt rather than by the direct oxidation of malate by malate dehydrogenase. Enzymatic and microarray assays revealed that the enzymes, regulators, and transport systems of the three peripheral glucose pathways were induced in response to glucose in the outer medium. We generated a series of isogenic mutants in one or more of the steps of all three pathways and found that, although all three functioned simultaneously, the glucokinase pathway and the 2-ketogluconate loop were quantitatively more important than the direct phosphorylation of gluconate. In physical terms, glucose catabolism genes were organized in a series of clusters scattered along the chromosome. Within each of the clusters, genes encoding porins, transporters, enzymes, and regulators formed operons, suggesting that genes in each cluster coevolved. The glk gene encoding glucokinase was located in an operon with the edd gene, whereas the zwf-1 gene, encoding glucose-6-phosphate dehydrogenase, formed an operon with the eda gene. Therefore, the enzymes of the glucokinase pathway and those of the Entner-Doudoroff pathway are physically linked and induced simultaneously. It can therefore be concluded that the glucokinase pathway is a sine qua non condition for P. putida to grow with glucose.
Versión del editorhttp://dx.doi.org/10.1128/JB.00203-07
URIhttp://hdl.handle.net/10261/3506
DOI10.1128/JB.00203-07
ISSN1098-5530
Aparece en las colecciones: (EEZ) Artículos

Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

90
checked on 20-mar-2024

SCOPUSTM   
Citations

189
checked on 16-abr-2024

WEB OF SCIENCETM
Citations

177
checked on 22-feb-2024

Page view(s)

415
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.