English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/3458
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 47 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Discovering semantic features in the literature: a foundation for building functional associations
Autor : Chagoyen, Mónica; Carmona-Sáez, Pedro; Shatkay, Hagit; Carazo, José M.; Pascual-Montano, Alberto
Fecha de publicación : 26-ene-2006
Editor: BioMed Central
Citación : BMC Bioinformatics 2006, 7:41
Resumen: [Background] Experimental techniques such as DNA microarray, serial analysis of gene expression (SAGE) and mass spectrometry proteomics, among others, are generating large amounts of data related to genes and proteins at different levels. As in any other experimental approach, it is necessary to analyze these data in the context of previously known information about the biological entities under study. The literature is a particularly valuable source of information for experiment validation and interpretation. Therefore, the development of automated text mining tools to assist in such interpretation is one of the main challenges in current bioinformatics research.
[Results] We present a method to create literature profiles for large sets of genes or proteins based on common semantic features extracted from a corpus of relevant documents. These profiles can be used to establish pair-wise similarities among genes, utilized in gene/protein classification or can be even combined with experimental measurements. Semantic features can be used by researchers to facilitate the understanding of the commonalities indicated by experimental results. Our approach is based on non-negative matrix factorization (NMF), a machine-learning algorithm for data analysis, capable of identifying local patterns that characterize a subset of the data. The literature is thus used to establish putative relationships among subsets of genes or proteins and to provide coherent justification for this clustering into subsets. We demonstrate the utility of the method by applying it to two independent and vastly different sets of genes.
[Conclusion] The presented method can create literature profiles from documents relevant to sets of genes. The representation of genes as additive linear combinations of semantic features allows for the exploration of functional associations as well as for clustering, suggesting a valuable methodology for the validation and interpretation of high-throughput experimental data.
Descripción : This article is available from: http://www.biomedcentral.com/1471-2105/7/41
URI : http://hdl.handle.net/10261/3458
DOI: 10.1186/1471-2105-7-41
ISSN: 1471-2105
Aparece en las colecciones: (CNB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
1471-2105-7-41.pdfPrincipal1,32 MBAdobe PDFVista previa
Visualizar/Abrir
1471-2105-7-41-s1.pdfArchivo adicional 1576,59 kBAdobe PDFVista previa
Visualizar/Abrir
1471-2105-7-41-s2.xlsArchivo adicional 21,08 MBMicrosoft ExcelVisualizar/Abrir
1471-2105-7-41-s3.pdfArchivo adicional 331,12 kBAdobe PDFVista previa
Visualizar/Abrir
1471-2105-7-41-s4.pdfArchivo adicional 423,5 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.