English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/3369
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : A countinuous-time cellular neural network chip for direction-selectable connected component detection with optical image acquisition
Autor : Espejo-Meana, S. ; Domínguez-Castro, R. ; Carmona-Galán, R. ; Rodríguez-Vázquez, Ángel
Fecha de publicación : sep-1994
Editor: Institute of Electrical and Electronics Engineers
Citación : Fourth International Conference on Microelectronics for Neural Networks and Fuzzy Systems (MICRONEURO’94), pp. 383-391, Turin, Italy, September 1994.
Resumen: This paper presents a continuous-time Cellular Neural Network (CNN) chip [1] for the application of Connected Component Detection (CCDet) [2]. Projection direction can be selected among four different possibilities. Every cell (or pixel) in the 32 x 32 array includes a photosensor circuitry and an automatic tuning circuitry to adapt to average environmental illumination. Electrical image uploading is possible as well. Input pixel-values are stored on local memories (one per cell), allowing sequential processing of the acquired image in different directions.
The prototype has been designed and fabricated on a standard digital CMOS technology: 1.6μm, n-well, single-poly, double-metal. Circuit implementation is based on current-mode techniques and uses a systematic approach valid for any CNN application [3]. Cell dimensions, including the CNN processing circuitry, the photosensor and the adaptive circuitry are 145 x 150 μm2, of which the sensor and adaptive circuitry amounts to ~15% of the total pixel area and the wiring and multiplexing (required for direction selectability) to about 40%. The remaining 45% corresponds to the CNN processing circuitry. Pixel density is ~46 cells/mm2, and power dissipation is 0.33mW/cell. These area and power figures forecast single-die CMOS chips with 100 x 100 complexity and about 3W power consumption.
URI : http://hdl.handle.net/10261/3369
Aparece en las colecciones: (IMS-CNM) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
continuous_time.pdf168,62 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.