English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/3267
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 29 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Defining functional distances over Gene Ontology
Autor : Pozo, Angela del; Pazos, Florencio; Valencia, Alfonso
Palabras clave : Proteins
Functional relationships
Gene Ontology
Functional metrics
Functional Tree
Fecha de publicación : 25-ene-2008
Editor: BioMed Central
Citación : BMC Bioinformatics 2008, 9:50
Resumen: [Background] A fundamental problem when trying to define the functional relationships between proteins is the difficulty in quantifying functional similarities, even when well-structured ontologies exist regarding the activity of proteins (i.e. 'gene ontology' -GO-). However, functional metrics can overcome the problems in the comparing and evaluating functional assignments and predictions. As a reference of proximity, previous approaches to compare GO terms considered linkage in terms of ontology weighted by a probability distribution that balances the non-uniform 'richness' of different parts of the Direct Acyclic Graph. Here, we have followed a different approach to quantify functional similarities between GO terms.
[Results] We propose a new method to derive 'functional distances' between GO terms that is based on the simultaneous occurrence of terms in the same set of Interpro entries, instead of relying on the structure of the GO. The coincidence of GO terms reveals natural biological links between the GO functions and defines a distance model Df which fulfils the properties of a Metric Space. The distances obtained in this way can be represented as a hierarchical 'Functional Tree'.
[Conclusions] The method proposed provides a new definition of distance that enables the similarity between GO terms to be quantified. Additionally, the 'Functional Tree' defines groups with biological meaning enhancing its utility for protein function comparison and prediction. Finally, this approach could be for function-based protein searches in databases, and for analysing the gene clusters produced by DNA array experiments.
Descripción : Provisional abstract and full-text PDF file correspond to the article as it appeared upon acceptance. Fully formatted PDF file and abstract versions will be made available soon.-- Paper contains 8 figures and an additional Newick tree format file.
URI : http://hdl.handle.net/10261/3267
DOI: 10.1186/1471-2105-9-50
ISSN: 1471-2105
Aparece en las colecciones: (CNB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
functional_distances.pdfMain text of the paper1,15 MBAdobe PDFVista previa
Visualizar/Abrir
Functional_tree.pdfFunctional Tree: The data provided represent the ’Functional Tree’ joining the Molecular Function Gene Ontology terms45,97 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.