English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/3262
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Comparing Combinations of Feature Regions for Panoramic VSLAM
Autor : Ramisa, Arnau; Lopez de Mantaras, Ramon; Aldavert, David; Toledo, Ricardo
Palabras clave : Artificial Intelligence
Affine covariant regions
Local descriptors
Interest points
Matching
Robot navigation
Panoramic images
Fecha de publicación : 2007
Citación : ICINCO-07 4th International Conference on Informatics in Control, Automation and Robotics, Angers France, 9-12 May, 2007. p. p.: 292-297
Resumen: Invariant (or covariant) image feature region detectors and descriptors are useful in visual robot navigation because they provide a fast and reliable way to extract relevant and discriminative information from an image and, at the same time, avoid the problems of changes in illumination or in point of view. Furthermore, complementary types of image features can be used simultaneously to extract even more information. However, this advantage always entails the cost of more processing time and sometimes, if not used wisely, the performance can be even worse. In this paper we present the results of a comparison between various combinations of region detectors and descriptors. The test performed consists in computing the essential matrix between panoramic images using correspondences established with these methods. Different combinations of region detectors and descriptors are evaluated and validated using ground truth data. The results will help us to find the best combination to use it in an autonomous robot navigation system.
URI : http://hdl.handle.net/10261/3262
Aparece en las colecciones: (IIIA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ICINCO_07.pdf260,29 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.