English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/3149
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Maximum a Posteriori Tree Augmented Naive Bayes Classifiers

AutorCerquides, Jesús ; López de Mántaras, Ramón
Palabras claveArtificial Intelligence
Bayesian networks
Bayesian network classifiers
Naive Bayes
Decomposable distributions
Bayesian model averaging
Fecha de publicación2004
EditorSpringer
CitaciónDiscovery Science, 7th. International Conference, DS 2004 Padova, Italy, October 2004 Proceedings. Lecture Notes in Artificial Intelligence, Vol. 3245, p.p.: 73-88, Springer Verlag, 2004
ResumenBayesian classifiers such as Naive Bayes or Tree Augmented Naive Bayes (TAN) have shown excellent performance given their simplicity and heavy underlying independence assumptions. In this paper we prove that under suitable conditions it is possible to efficiently calculate a weighted set with the k maximum a posteriori TAN models. This allows efficient TAN ensemble learning and accounting for model uncertainty. These results can be used to construct two classifiers. Both classifiers have the advantage of allowing the introduction of prior knowledge about structure or parameters into the learning process. Empirical results show that both classifiers lead to an improvement in error rate and accuracy of the predicted class probabilities over established TAN based classifiers with equivalent complexity.
DescripciónThe original publication is available at www.springerlink.com
Versión del editorhttp://dx.doi.org/10.1007/b100845
URIhttp://hdl.handle.net/10261/3149
DOI10.1007/b100845
ISBN3-540-23357-1
ISSN0302-9743
Aparece en las colecciones: (IIIA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
DSMAPTAN.pdf191,75 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.