English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/3019
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

TAN Classifiers Based on Decomposable Distributions

AutorCerquides, Jesús ; López de Mántaras, Ramón
Palabras claveArtificial Intelligence
Bayesian networks classifiers
Naive Bayes
Tree augmented naive Bayes
Decomposable distributions
Bayesian model averaging
Fecha de publicación2005
EditorSpringer
CitaciónMachine Learning, 2005, 59 (3): 323-354
ResumenIn this paper we present several Bayesian algorithms for learning Tree Augmented Naive Bayes (TAN) models. We extend the results in Meila & Jaakkola (2000a) to TANs by proving that accepting a prior decomposable distribution over TAN's, we can compute the exact Bayesian model averaging over TAN structures and parameters in polynomial time. Furthermore, we prove that the k-maximum a posteriori (MAP) TAN structures can also be computed in polynomial time. We use these results to correct minor errors in Meila & Jaakkola (2000a) and to construct several TAN based classifiers provide consistently better predictions over Irvine datasets and artificially generated data than TAN based classifiers proposed in the literature.
DescripciónThe original publication is available at www.springerlink.com
URIhttp://hdl.handle.net/10261/3019
ISSN0885-6125
Aparece en las colecciones: (IIIA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TR-2004-01.pdf416,09 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.