English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/3001
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : AI and Music: From Composition to Expressive Performance
Autor : López de Mantaras, Ramón; Arcos, Josep Ll.
Palabras clave : Artificial Intelligence
Case-Based Reasoning
Fecha de publicación : 2002
Editor: AAAI Press
Citación : AI magazine, 2002, 23 (3): 43-57
Resumen: In this paper we first survey the three major types of computer music systems based on AI techniques: compositional, improvisational, and performance systems. Representative examples of each type are briefly described. Then, we look in more detail at the problem of endowing the resulting performances with the expressiveness that characterizes human-generated music. This is one of the most challenging aspects of computer music that has been addressed just recently. The main problem in modeling expressiveness is to grasp the performer’s “touch”; that is, the knowledge applied when performing a score. Humans acquire it through a long process of observation and imitation. For this reason, previous approaches, based on following musical rules trying to capture interpretation knowledge, had serious limitations. An alternative approach, much closer to the observation-imitation process observed in humans, is that of directly using the interpretation knowledge implicit in examples extracted from recordings of human performers instead of trying to make explicit such knowledge. In the last part of the paper we report on a performance system, SaxEx, based on this alternative approach, capable of generating high quality expressive solo performances of Jazz ballads based on examples of human performers within a case-based reasoning system.
URI : http://hdl.handle.net/10261/3001
ISSN: 0738-4602
Aparece en las colecciones: (IIIA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
001_AIMag23-03-006.pdf743,84 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.