Please use this identifier to cite or link to this item:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Nutrient mass balance of the seagrass Posidonia oceanica: the importance of nutrient retranslocation

AuthorsAlcoverro, Teresa CSIC ORCID ; Manzanera, Marta; Romero Martinengo, Javier
KeywordsMediterranean Sea
Issue Date17-Mar-2000
PublisherInter Research
CitationMar Ecol Prog Ser 194: 13-21, 2000.
AbstractThe seasonal nutrient mass balance of the dominant seagrass of the Mediterranean, Posidonia oceanica (L.) Delde, was evaluated in NE Spain in order to test the hypothesis that the effect of seasonal nutrient imbalance can be reduced by the reutilization of internal nutrient pools. To this end we investigated the seasonal and age-dependent variability of nitrogen and phosphorus concentration of the leaves, inferring from these data values of seasonal nitrogen and phosphorus incorporation, uptake, losses and retranslocation. Incorporation of nitrogen and phosphorus in leaves peaked in June and was lowest in September, thus following the seasonal growth pattern of the plant. Retranslocation of nitrogen and phosphorus was high from May to September and close to zero during the rest of the year. Losses of nitrogen and phosphorus were highest at the end of summer, associated with the major biomass losses. Nitrogen uptake by leaves reached maximum values in winter and was lowest during August-September, while phosphorus uptake was highest in spring and lowest in August-September. On an annual basis nitrogen and phosphorus uptake accounted for 60 and 41 % of the total nutrient incorporation, respectively, while retranslocation of nutrients from old tissues accounted for the remaining 40 and 59%. Although roots and rhizomes function as sources of nutrients at the beginning of the summer, their contribution to the seasonal nutrient budget seemed to be minor.
Appears in Collections:(CEAB) Artículos

Files in This Item:
File Description SizeFormat
nutrient.pdf1,04 MBAdobe PDFThumbnail
Show full item record
Review this work

Page view(s)

checked on May 22, 2022


checked on May 22, 2022

Google ScholarTM


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.