Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/289495
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

Adaptation of clinical isolates of Klebsiella pneumoniae to the combination of niclosamide with the efflux pump inhibitor phenyl-arginine-β-naphthylamide (PaβN): co-resistance to antimicrobials

AuthorsPacios, Olga; Fernández-García, Laura; Bleriot, Inés; Blasco, Lucía; Ambroa, Antón; López, María; Ortiz-Cartagena, Concha; González de Aledo, Manuel; Fernández-Cuenca, Felipe CSIC ORCID CVN; Oteo-Iglesias, Jesús; Pascual, Álvaro CSIC ORCID; Martínez-Martínez, Luis; Tomás, María
Issue Date27-Apr-2022
PublisherOxford University Press
CitationJournal of Antimicrobial Chemotherapy 77(5): 1272-1281 (2022)
Abstract[Objectives] To search for new means of combatting carbapenemase-producing strains of Klebsiella pneumoniae by repurposing the anti-helminth drug niclosamide as an antimicrobial agent and combining it with the efflux pump inhibitor (EPI) phenyl-arginine-β-naphthylamide (PaβN).
[Methods] Niclosamide and PaβN MICs were determined for six clinical K. pneumoniae isolates harbouring different carbapenemases by broth microdilution and chequerboard assays. Time–kill curves in the presence of each drug alone and in combination were conducted. The viability of bacterial cells in the presence of repetitive exposures at 8 h to the treatment at the same concentration of niclosamide and/or PaβN (adapted isolates) was determined. The acrAB-tolC genes and their regulators were sequenced and quantitative RT–PCR was performed to assess whether the acrA gene was overexpressed in adapted isolates compared with non-adapted isolates. Finally, the MICs of several antimicrobials were determined for the adapted isolates.
[Results] Niclosamide and PaβN had synergistic effects on the six isolates in vitro, but adaptation appeared when the treatment was applied to the medium every 8 h, with an increase of 6- to 12-fold in the MIC of PaβN. Sequencing revealed different mutations in the regulators of the tripartite AcrAB-TolC efflux pump (ramR and acrR) that may be responsible for the overexpression of the efflux pump and the adaptation to this combination. Co-resistance to different antimicrobials confirmed the overexpression of the AcrAB-TolC efflux pump.
[Conclusions] Despite the synergistic effect that preliminary in vitro stages may suggest, the combinations of drugs and EPI may generate adapted phenotypes associated with antimicrobial resistance that must be taken into consideration.
Publisher version (URL)https://doi.org/10.1093/jac/dkac044
URIhttp://hdl.handle.net/10261/289495
DOI10.1093/jac/dkac044
ISSN0305-7453
Appears in Collections:(IBIS) Artículos




Files in This Item:
File Description SizeFormat
accesoRestringido.pdf59,24 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work

PubMed Central
Citations

2
checked on Sep 23, 2023

SCOPUSTM   
Citations

4
checked on Sep 24, 2023

WEB OF SCIENCETM
Citations

4
checked on Sep 28, 2023

Page view(s)

20
checked on Sep 30, 2023

Download(s)

7
checked on Sep 30, 2023

Google ScholarTM

Check

Altmetric

Altmetric


Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.