English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/2888
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Sequential Loading of Cohesin Subunits during the First Meiotic Prophase of Grasshoppers

AutorValdeolmillos, Ana M.; Viera, Alberto; Page, Jesús; Prieto, Ignacio; Santos, Juan L.; Parra, María Teresa; Heck, Margarete M. S.; Martínez-Alonso, Carlos; Barbero, José Luis ; Suja, José A.; Rufas, Julio S.
Fecha de publicación23-feb-2007
EditorPublic Library of Science
CitaciónPLoS Genet.; 3(2): e28 (February 2007).
ResumenThe cohesin complexes play a key role in chromosome segregation during both mitosis and meiosis. They establish sister chromatid cohesion between duplicating DNA molecules during S-phase, but they also have an important role during postreplicative double-strand break repair in mitosis, as well as during recombination between homologous chromosomes in meiosis. An additional function in meiosis is related to the sister kinetochore cohesion, so they can be pulled by microtubules to the same pole at anaphase I. Data about the dynamics of cohesin subunits during meiosis are scarce; therefore, it is of great interest to characterize how the formation of the cohesin complexes is achieved in order to understand the roles of the different subunits within them. We have investigated the spatio-temporal distribution of three different cohesin subunits in prophase I grasshopper spermatocytes. We found that structural maintenance of chromosome protein 3 (SMC3) appears as early as preleptotene, and its localization resembles the location of the unsynapsed axial elements, whereas radiation-sensitive mutant 21 (RAD21) (sister chromatid cohesion protein 1, SCC1) and stromal antigen protein 1 (SA1) (sister chromatid cohesion protein 3, SCC3) are not visualized until zygotene, since they are located in the synapsed regions of the bivalents. During pachytene, the distribution of the three cohesin subunits is very similar and all appear along the trajectories of the lateral elements of the autosomal synaptonemal complexes. However, whereas SMC3 also appears over the single and unsynapsed X chromosome, RAD21 and SA1 do not. We conclude that the loading of SMC3 and the non-SMC subunits, RAD21 and SA1, occurs in different steps throughout prophase I grasshopper meiosis. These results strongly suggest the participation of SMC3 in the initial cohesin axis formation as early as preleptotene, thus contributing to sister chromatid cohesion, with a later association of both RAD21 and SA1 subunits at zygotene to reinforce and stabilize the bivalent structure. Therefore, we speculate that more than one cohesin complex participates in the sister chromatid cohesion at prophase I.
DescripciónA previous version of this article appeared as an Early Online Release on January 2, 2007 (doi:10.1371/journal.pgen.0030028.eor).
URIhttp://hdl.handle.net/10261/2888
DOI10.1371/journal.pgen.0030028
ISSN1553-7404
Aparece en las colecciones: (CIB) Artículos
(CNB) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Sequential.pdf777,89 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.