Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/287753
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

High-heat flux Cu-0.8Y alloys investigated by positron annihilation spectroscopy

AutorDomínguez-Reyes, R.; Monge, M.A.; Galiana, B.; Ortega, Y.; Muñoz, A. CSIC; Carro-Sevillano, G.
Palabras claveCopper alloys
Oxide dispersion strengthened
Positron annihilation
High-heat flux materials
Equal channel angular pressing
Reinforced materials
Fecha de publicación2022
EditorElsevier BV
CitaciónJournal of Alloys and Compounds 900: 163430 (2022)
ResumenThis work studies the thermal stability of the microstructure and the evolution of the defects of two high-heat flux Cu-0.8 wt%Y alloys fabricated following two alternative powder metallurgy routes. One batch was produced by direct hot isostatic pressing (HIP) consolidation of Cu-0.8 wt%Y pre-alloyed atomized powders while an additional ball milling processing step was introduced before HIP sintering for the second alloy. The stability and recovery characteristics of the vacancy type defects in these alloys in the as-produced state and after processing by severe equal channel angular pressing to achieve a refine microstructure have been investigated by positron lifetime and coincidence Doppler broadening measurements in samples subjected to isochronal annealing from room temperature to 900 °C. Microhardness measurements and electron transmission microscopy analysis have also been performed to support the results obtained from the positron annihilation spectroscopy analysis techniques. The recovery curves of the positron lifetime and S-W plots show a recovery stage in agreement with the recovery stage V for Cu. However, a full recovery is not accomplished, and a stage that reverts the previous recovery takes place after annealing above ~600 °C, that leads to the formation of very stable defects at temperatures up to 900 °C, identified as vacancy aggregates and nanocavities. The characteristic shape of the coincidence Doppler broadening indicates that the dispersed Y-O particles in the Cu matrix appear to be responsible for stabilizing the vacancy aggregates and nanocavities for temperatures above 600–700 °C.
Versión del editorhttps://doi.org/10.1016/j.jallcom.2021.163430
URIhttp://hdl.handle.net/10261/287753
DOI10.1016/j.jallcom.2021.163430
Identificadoresdoi: 10.1016/j.jallcom.2021.163430
issn: 0925-8388
Aparece en las colecciones: (CENIM) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
1-s2.0-S0925838821048404-main.pdf8,32 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

2
checked on 20-abr-2024

WEB OF SCIENCETM
Citations

1
checked on 27-feb-2024

Page view(s)

21
checked on 24-abr-2024

Download(s)

15
checked on 24-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons