English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/28424
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Biotic diversification in the Guayana Highlands: a proposal

AuthorsRull, Valentí
Climatic change
Guayana Highlands,
South America
Issue Date2005
CitationJournal of Biogeography 32(6): 921–927 (2005)
Abstract[EN] Until recently, the high degree of diversity and endemism of the Guayana Highlands was explained within the frame of the refuge theory. Although this hypothesis is unsupported by recent palaeoecological evidence, no new diversification model has been proposed. This paper is a proposal based on the latest palynological findings that indicate a downward biotic migration of c. 1100 m altitude during glacials, and the subsequent interglacial upward shift, in response to colder and warmer climates, respectively. Therefore, during glacials, biotic mixing is expected in the lowlands, thus promoting sympatric speciation, hybridization and polyploidy. At the mountaintops, unknown cold-adapted taxa and pa´ramo-like(?) communities are expected to have occurred, and vicariance prevailed. In the interglacials, many taxa have had the opportunity for ascending to the mountains again, allowing genetic interchange among their slopes and summits, while others would have been adapted to lowlands. The interglacial highland communities, where vicariance still predominated, experienced some extinction owing to habitat loss by upland displacement. According to this model, the successive alternation of glacials and interglacials resulted in a net increase of diversity and endemism, favoured by the complex topography and habitat heterogeneity, which allowed high niche diversification. This model has some similarities with the Andean and Amazon modes of diversification, but the special topographical characteristics of the Guayana region made it different in other fundamental aspects. The Guayana Highlands would have acted as a ‘biodiversity pump’ for the surrounding inner and coastal lowlands, due to the repeated speciation and further spreading events, as a response to climate. Several working hypotheses are suggested in relation to the proposed model. The use of coordinated international multiproxy projects combining palaeoecology and genetic analysis of modern taxa is strongly encouraged for exploring these ideas.
Description7 p.
Publisher version (URL)http://dx.doi.org/10.1111/j.1365-2699.2005.01252.x
Appears in Collections:(IBB) Artículos
Files in This Item:
There are no files associated with this item.
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.