Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/282806
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

A poplar short-chain dehydrogenase reductase plays a potential key role in biphenyl detoxification

AutorContreras, Ángela; Merino Pérez, Irene CSIC ORCID; Domínguez-Álvarez, Enrique CSIC ORCID ; Bolonio, David; Ortiz, José-Eugenio; Oñate-Sánchez, Luis; Plaza Gómez, Luis Manuel CSIC
Palabras clavePCB
Populus
Persistent organic pollutants
Phytoremediation
Fecha de publicación31-ago-2021
EditorNational Academy of Sciences (U.S.)
CitaciónProceedings of the National Academy of Sciences of the USA 118(35): e2103378118 (2021)
ResumenPolychlorinated biphenyls (PCBs) are persistent organic pollutants with severe effects on human health and the biosphere. Plant-based remediation offers many benefits over conventional PCB remediation, but its development has been hampered by our poor understanding of biphenyl metabolism in eukaryotes, among other factors. We report here a major PCB-responsive protein in poplar, a plant model system capable of PCB uptake and translocation. We provide structural and functional evidence that this uncharacterized protein, termed SDR57C, belongs to the heterogeneous short-chain dehydrogenase reductase (SDR) superfamily. Despite sequence divergence, structural modeling hinted at structural and functional similarities between SDR57C and BphB, a central component of the Bph pathway for biphenyl/PCB degradation in aerobic bacteria. By combining gas chromatography/mass spectrometry (GC/MS) profiling with a functional complementation scheme, we found that poplar SDR57C can replace BphB activity in the upper Bph pathway of Pseudomonas furukawaii KF707 and therefore catalyze the oxidation of 2,3-dihydro-2,3-dihydroxybiphenyl (2,3-DHDB) to 2,3-dihydroxybiphenyl (2,3-DHB). Consistent with this biochemical activity, we propose a mechanism of action based on prior quantum studies, general properties of SDR enzymes, and the modeled docking of 2,3-DHDB to the SDR57C-NAD+ complex. The putative detoxifying capacity of SDR57C was substantiated through reverse genetics in Arabidopsis thaliana Phenotypic characterization of the SDR lines underscored an inducible plant pathway with the potential to catabolize toxic biphenyl derivatives. Partial similarities with aerobic bacterial degradation notwithstanding, real-time messenger RNA quantification indicates the occurrence of plant-specific enzymes and features. Our results may help explain differences in degradative abilities among plant genotypes and also provide elements to improve them.
Descripción9 Pág. Centro de Biotecnología y Genómica de Plantas (CBGP)
Versión del editorhttps://doi.org/10.1073/pnas.2103378118
URIhttp://hdl.handle.net/10261/282806
DOI10.1073/pnas.2103378118
ISSN0027-8424
Aparece en las colecciones: (INIA) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
A-poplar-short-chain-dehydrogenase.pdfartículo1,78 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

PubMed Central
Citations

2
checked on 12-abr-2024

SCOPUSTM   
Citations

6
checked on 11-abr-2024

WEB OF SCIENCETM
Citations

5
checked on 27-feb-2024

Page view(s)

52
checked on 18-abr-2024

Download(s)

41
checked on 18-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons