Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/275157
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

A parameterization of long-continuing-current (LCC) lightning in the lightning submodel LNOX (version 3.0) of the Modular Earth Submodel System (MESSy, version 2.54)

AutorPérez-Invernón, Francisco J.; Huntrieser, Heidi; Jöckel, Patrick; Gordillo Vázquez, Francisco J. CSIC ORCID
Fecha de publicación21-feb-2022
EditorCopernicus Publications
CitaciónGeoscientific Model Development 15(4): 1545-1565 (2022)
ResumenLightning flashes can produce a discharge in which a continuing electrical current flows for more than 40 ms. Such flashes are proposed to be the main precursors of lightning-ignited wildfires and also to trigger sprite discharges in the mesosphere. However, lightning parameterizations implemented in global atmospheric models do not include information about the continuing electrical current of flashes. The continuing current of lightning flashes cannot be detected by conventional lightning location systems. Instead, these so-called long-continuing-current (LCC) flashes are commonly observed by extremely low-frequency (ELF) sensors and by optical instruments located in space. Reports of LCC lightning flashes tend to occur in winter and oceanic thunderstorms, which suggests a connection between weak convection and the occurrence of this type of discharge. In this study, we develop a parameterization of LCC lightning flashes based on a climatology derived from optical lightning measurements reported by the Lightning Imaging Sensor (LIS) on board the International Space Station (ISS) between March 2017 and March 2020. We use meteorological data from reanalyses to develop a global parameterization that uses vertical velocity at the 450 hPa pressure level as a proxy for the ratio of LCC to total lightning in thunderstorms. We implement this parameterization into the LNOX submodel of the Modular Earth Submodel System (MESSy) for usage within the European Center HAMburg general circulation model (ECHAM)/MESSy Atmospheric Chemistry (EMAC) model and compare the observed and simulated climatologies of LCC lightning flashes using six different lightning parameterizations. We find that the best agreement between the simulated and observed spatial distribution is obtained when using a novel combined lightning parameterization based on the cloud-top height over land and on the convective precipitation over ocean. © Author(s) 2022.
DescripciónThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Versión del editorhttp://dx.doi.org/10.5194/gmd-15-1545-2022
URIhttp://hdl.handle.net/10261/275157
DOI10.5194/gmd-15-1545-2022
ISSN1991-959X
E-ISSN1991-9603
Aparece en las colecciones: (IAA) Artículos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato
2022GMD....15.1545P.pdf25,3 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

6
checked on 17-abr-2024

WEB OF SCIENCETM
Citations

5
checked on 28-feb-2024

Page view(s)

39
checked on 22-abr-2024

Download(s)

2
checked on 22-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons