English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/27505
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
DC FieldValueLanguage
dc.contributor.authorDarbra, Rosa María-
dc.contributor.authorEljarrat, Ethel-
dc.contributor.authorBarceló, Damià-
dc.date.accessioned2010-09-08T13:12:38Z-
dc.date.available2010-09-08T13:12:38Z-
dc.date.issued2008-04-01-
dc.identifier.citationTRAC - Trends in Analytical Chemistryen_US
dc.identifier.issn0165-9936 (Print)-
dc.identifier.urihttp://hdl.handle.net/10261/27505-
dc.description9 pages, 1 figure, 1 table.en_US
dc.description.abstractEnvironmental risk assessment is an essential element in any decision-making process in order to minimize the effects of human activities on the environment. Unfortunately, often environmental data tends to be vague and imprecise, so uncertainty is associated with any study related with these kind of data.en_US
dc.description.abstractEssentially, uncertainty in risk assessment may have two origins – randomness and incompleteness. There are two main ways to deal with these uncertainties – probability theory and fuzzy logic.en_US
dc.description.abstractProbability theory is based on a stochastic approach, using probability functions to describe random variability in environmental parameters.en_US
dc.description.abstractFuzzy logic uses membership functions and linguistic parameters to express vagueness in environmental issues.en_US
dc.description.abstractWe discuss the best way to deal with uncertainties in the environmental field and give examples of probabilistic and fuzzy-logic approaches applied to environmental risk assessment.en_US
dc.description.sponsorshipThis Study was funded by the European Union through the projects RISKBASE (GOCE 036938), AQUATERRA (Project number 505428) and by the Spanish Ministry of Education and Science through the project CEMAGUA (CGL2007-64551/HID).en_US
dc.format.extent139109 bytes-
dc.format.mimetypeapplication/pdf-
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsopenAccessen_US
dc.subjectEnvironmental risk assessmenten_US
dc.subjectFuzzy logicen_US
dc.subjectMonte Carloen_US
dc.subjectProbability theoryen_US
dc.subjectUncertaintyen_US
dc.titleHow to measure uncertainties in environmental risk assassmenten_US
dc.typeartículoen_US
dc.identifier.doi10.1016/j.trac.2008.02.005-
dc.description.peerreviewedPeer revieweden_US
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.trac.2008.02.005en_US
Appears in Collections:(IDAEA) Artículos
Files in This Item:
File Description SizeFormat 
Darbra_Rosa_et_al.pdf135,85 kBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.