English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/27498
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 22 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Extensive De Novo sequencing of new parvalbumin isoforms using a novel combination of bottom-up proteomics, accurate molecular mass measurement by FTICR-MS, and selected MS/MS Ion monitoring

AutorCarrera, Mónica ; Cañas, Benito; Vázquez, Jesús; Gallardo, José Manuel
Palabras claveProteomics
De novo sequencing
Selected MS/MS ion monitoring
Fecha de publicación2010
EditorAmerican Chemical Society
CitaciónJournal of Proteome Research 9: 4393–4406 (2010)
ResumenParvalbumins (PRVB) (11.20-11.55 kDa) are considered the major fish allergens. In this work, we propose a novel strategy for extensive characterization of this group of proteins based on the integration of a classical Bottom-Up proteomics approach with accurate Mr determination by FTICR-MS of intact proteins and selected MS/MS ion monitoring (SMIM) of peptide mass gaps. For each PRVB, mass spectra obtained by LC-ESI-IT-MS/MS from two digests (trypsin, Glu-C) were de novo sequenced manually with help of two programs (PEAKS, DeNovoX). The deduced peptide sequences were arranged and the theoretical Mr for the resulting sequences was calculated. Experimental Mr for each PRVB was measured with high mass accuracy by FTICR-MS (0.05-4.47 ppm). The masses of several missing peptide gaps were estimated by comparing the theoretical and experimentalMr, and the MS/MS spectra corresponding to these ions were obtained by LC-ESI-IT-MS/MS in the SMIM scanning mode. Finally, all peptide sequences were combined to generate the final protein sequences. This approach allowed the complete de novo MS-sequencing of 25 new PRVB isoforms. These new sequences belong to 11 different species from the Merlucciidae family, organisms for which genomes remain unsequenced. This study constitutes the report accounting for the higher number of new proteins completely sequenced making use of MS-based techniques only.
Versión del editorhttp://dx.doi.org/10.1021/pr100163e
Aparece en las colecciones: (IIM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.