English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/27221
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Nutrient irrigation of the North Atlantic

AutorPelegrí, Josep Lluís ; Marrero-Díaz, Ángeles; Ratsimandresy, A. W.
Palabras claveNutrient cycles
Subtropical zone
Isopycnals
North Atlantic
Gulf stream
Upwelling
Fecha de publicaciónago-2006
EditorElsevier
CitaciónProgress in Oceanography 70(2-4): 366-406 (2006)
ResumenThe North Atlantic, as all major oceans, has a remarkable duality in primary production, manifested by the existence of well-defined high and low mean primary production regions. The largest region is the North Atlantic Subtropical Gyre (NASTG), an anticyclone characterized by bowl shaped isopycnals and low production. The NASTG is surrounded at its margins by smaller cyclonic high-production regions, where these isopycnals approach the sea surface. The most extensive cyclonic regions are those at the latitudinal extremes, i.e. the subpolar and tropical oceans, though smaller ones do occur at the zonal boundaries. In this article we review historical data and present new analyses of climatological data and a selected number of hydrographic cruises in the western/northwestern and eastern/southeastern boundaries of the NASTG, with the objective of investigating the importance of upward epipycnal advection of nutrient-rich subsurface layers (irrigation) in maintaining high primary production in the euphotic layers. In the North Atlantic Subpolar Gyre (NASPG) irrigation implies intergyre exchange caused by the outcropping extension of the Gulf Stream (GS), following the formation of the deep winter mixed-layer. In the eastern boundary of the NASTG irrigation is attained through a permanent upwelling cell, which feeds the Canary Upwelling Current (CUC). In the southeastern corner irrigation occurs in fall, when the Guinea Dome (GD) is reinforced, and in winter, when the CUC reaches its southernmost extension. Other characteristics of the north/south extension of the GS/CUC are the seasonal nutrient replenishing of subsurface layers (spring restratification of NASPG and winter relaxation of the GD) and the maintenance of high levels of diapycnal mixing during the last phase of nutrient transfer to the euphotic layers. Off the Mid-Atlantic Bight the GS transports a total of about 700 kmol s−1 of nitrate, with almost 100 kmol s−1 carried in the surface (σθ < 26.8) layers and some 350 kmol s−1 in the intermediate (26.8 < σθ < 27.5) layers. A box model suggests that north of Cape Hatteras most surface and upper-thermocline nitrates are used to sustain the high levels of primary production in the NASPG. Off Cape Blanc there is winter along-shore convergence of order 10 kmol s−1 of nitrate in the near-surface layers (possibly larger in summer), with only a small fraction used to sustain local primary production in the coastal upwelling band and the remainder carried to the interior ocean. Nutrients and biomass exported from these cyclonic regions may account for the concentration levels observed within the NASTG
DescripciónSpecial issue Gabriel T. Csanady: Understanding the Physics of the Ocean.-- 41 pages, 18 figures, 5 tables
Versión del editorhttp://dx.doi.org/10.1016/j.pocean.2006.03.018
URIhttp://hdl.handle.net/10261/27221
DOI10.1016/j.pocean.2006.03.018
ISSN0079-6611
Aparece en las colecciones: (ICM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.