English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/27215
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Spectral discrimination of Ridolfia segetum and sunflower as affected by phenological stage

AutorPeña Barragán, José Manuel ; López Granados, Francisca ; Jurado-Expósito, Montserrat ; García Torres, Luis
Palabras claveHyperspectral
Multispectral
Precision agriculture
Remote weed detection
Spectral library
Vegetation index
Fecha de publicación2006
EditorWiley-Blackwell
CitaciónWeed Research 46, 10–21 (2006)
ResumenRidolfia segetum is an umbelliferous weed frequent and abundant in sunflower crops in the Mediterranean basin. Field research was conducted to evaluate the potential of hyperspectral and multispectral reflectance and five vegetation indices in the visible to near infrared spectral range, for discriminating bare soil, sunflower and R. segetum at different phenological stages. This was a preliminary step for mapping R. segetum patches in sunflower using remote sensing for herbicide application decisions. Reflectance data were collected at three sampling dates (mid-May, mid-June and mid-July, corresponding to vegetative-early reproductive, flowering and senescent phenological stages respectively) using a handheld field spectroradiometer. Differences observed in hyperspectral reflectance curves were statistically significant within and between crop and weed phenological stages depending on sampling date, which facilitates their discrimination. Statistically significant differences in the multispectral and vegetation indices analysis showed that it is also possible to distinguish any of the classes studied. Our study provides some information for constructing the spectral libraries of sunflower and R. segetum in which the different phenological stages co-existing in the field were considered. Hyperspectral and multispectral results suggest that mapping R. segetum patches in sunflower is feasible using airborne hyperspectral sensors, and high-resolution satellite imagery or aerial photography, respectively, taking into account specific timeframes.
Versión del editorhttp://dx.doi.org/10.1111/j.1365-3180.2006.00488.x
URIhttp://hdl.handle.net/10261/27215
DOI10.1111/j.1365-3180.2006.00488.x
ISSN1365-3180
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Digital CSIC.Nota.pdf153,65 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.