Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/270579
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invite to open peer review
DC FieldValueLanguage
dc.contributor.authorRyu, Sungguenes_ES
dc.contributor.authorLópez, Rosaes_ES
dc.contributor.authorSerra, Llorençes_ES
dc.contributor.authorSánchez, Davides_ES
dc.date.accessioned2022-05-26T07:55:19Z-
dc.date.available2022-05-26T07:55:19Z-
dc.date.issued2022-05-06-
dc.identifier.citationNature Communications 13: 2512 (2022)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/270579-
dc.description.abstractClassically, the power generated by an ideal thermal machine cannot be larger than the Carnot limit. This profound result is rooted in the second law of thermodynamics. A hot question is whether this bound is still valid for microengines operating far from equilibrium. Here, we demonstrate that a quantum chiral conductor driven by AC voltage can indeed work with efficiencies much larger than the Carnot bound. The system also extracts work from common temperature baths, violating Kelvin-Planck statement. Nonetheless, with the proper definition, entropy production is always positive and the second law is preserved. The crucial ingredients to obtain efficiencies beyond the Carnot limit are: i) irreversible entropy production by the photoassisted excitation processes due to the AC field and ii) absence of power injection thanks to chirality. Our results are relevant in view of recent developments that use small conductors to test the fundamental limits of thermodynamic engines.es_ES
dc.description.sponsorshipWe acknowledge support from Grants No. MAT2017-82639 and No. PID2020-117347GB-I00 funded by MCIN/AEI/10.13039/501100011033, No. MDM2017-0711 funded by MINECO/AEI/FEDER María de Maeztu Program for Units of Excellence, and No. PDR2020-12 funded by GOIB. S.R. also acknowledges partial support from National Research Foundation of Korea (Grant No. 2021R1A6A3A03040076).es_ES
dc.formatapplication/pdfes_ES
dc.language.isoenges_ES
dc.publisherSpringer Naturees_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82639-P/ES/TRANSPORTE EN MATERIALES CUANTICOS EN LA NANOESCALA/es_ES
dc.relationinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117347GB-I00/ES/TRANSPORTE CUANTICO Y TERMODINAMICA: NUEVAS AVENIDAS EN MATERIALES CUANTICOS/es_ES
dc.relationinfo:eu-repo/grantAgreement/MICIN//MDM2017-0711es_ES
dc.relation.isversionofPublisher's versiones_ES
dc.relation.isbasedonRyu, Sungguen; López, Rosa; Serra, Llorenç; Sánchez, David; 2022; Supplementary Information: Beating Carnot efficiency with periodically driven chiral conductors [Dataset]; https://doi.org/10.1038/s41467-022-30039-7-
dc.relation.isreferencedbyRyu, Sungguen; López, Rosa; Serra, Llorenç; Sánchez, David; 2021; Beating Carnot efficiency with periodically driven chiral conductors; arXiv; https://doi.org/10.48550/arXiv.2104.11149es_ES
dc.rightsopenAccesses_ES
dc.titleBeating Carnot efficiency with periodically driven chiral conductorses_ES
dc.typeartículoes_ES
dc.identifier.doi10.1038/s41467-022-30039-7-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1038/s41467-022-30039-7es_ES
dc.identifier.e-issn2041-1723-
dc.rights.licensehttp://creativecommons.org/licenses/by/4.0/es_ES
dc.contributor.funderMinisterio de Ciencia e Innovación (España)es_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.contributor.funderAgencia Estatal de Investigación (España)es_ES
dc.contributor.funderEuropean Commissiones_ES
dc.contributor.funderNational Research Foundation of Koreaes_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100011033es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004837es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003725es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat
Beating_Carnot_efficiency.pdf749,47 kBAdobe PDFThumbnail
View/Open
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

7
checked on May 15, 2024

WEB OF SCIENCETM
Citations

3
checked on Feb 27, 2024

Page view(s)

56
checked on May 26, 2024

Download(s)

47
checked on May 26, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons