English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/2702
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar otros formatos: Exportar EndNote (RIS)Exportar EndNote (RIS)Exportar EndNote (RIS)
Título : Non-linear data mapping and dimensionality reduction system
Autor : Pascual-Marqui, Roberto D.; Pascual-Montano, Alberto; Kochi, Kieko; Carazo, José M.
Fecha de publicación : 22-ago-2007
Citación : European Patent Code: EP 1353295 B1
Resumen: This is a system for organizing n-dimensional data onto a lower dimensionality space in a non-linear and non-supervised manner. The types of methods presented here are usually known as self-organizing maps and are similar but not identical to the well known Kohonen self-organizing maps. The basic idea is a combination of data clustering and smooth projection thereof into a lower dimensional space (usually a two-dimensional grid). The proposed system consists of two modified versions of the functional of the well-known Fuzzy c-means clustering algorithm, where the cluster centers or code vectors are distributed on a low dimensional regular grid, for which a penalization term is added with the object of assuring a smooth distribution of the values of the code vectors on said grid. In one of the two cases, the faithfulness to the data is achieved by minimizing the differences between the data and the code vectors, and in the other case, the new functional is based on the probability density estimation of the input data.
Descripción : Filing Date: 2000-12-12.-- International Publication Number WO_2002048962 (20020620)
URI : http://hdl.handle.net/10261/2702
Aparece en las colecciones: (CNB) Patentes
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
EP_1353295_B1.pdf790,06 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.