English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/26994
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 56 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Mass fluxes in the Canary Basin

AutorMachín, Félix; Hernández Guerra, Alonso; Pelegrí, Josep Lluís
Palabras claveCanary Basin
Water masses
Mass flux
Nutrient flux
Canary Current
Coastal upwelling
Inverse model
Fecha de publicaciónago-2006
EditorElsevier
CitaciónProgress in Oceanography 70(2-4): 416-447 (2006)
ResumenOcean studies in the 1970s provided an improved knowledge of the coastal upwelling region off NW Africa while in the 1980s and 1990s they led to a good description of the open ocean flow patterns in the Canary Basin. It was not until the late 1990s that major research addressed the open-coastal ocean coupled response. Here we examine the mean and seasonal circulation patterns in the Canary Basin with data from four hydrographic cruises carried out in the region between Cape Ghir, Madeira Island, and the Canary Islands. We apply an inverse box model to an ocean divided into 14 layers, with several layers representing each water mass or stratum, to obtain mass fluxes consistent with the thermal wind equation. An optimum flow description is obtained using conservation of mass, salt and heat anomaly, biologically corrected oxygen, and silicate, and allowing for Ekman transport in the surface layer and dianeutral mixing between adjacent layers. The deep waters show no predominant flow direction while the intermediate waters display localized southward flowing Mediterranean Water far from shore, and northward flowing Antarctic Intermediate Water near the continental slope, specially in the passage between the eastern Canary Islands and the African slope. The mean upper-thermocline Canary Current, composed of North Atlantic Central Water, flows south with an open-ocean branch transporting about 3 ± 1 Sv (1 Sv = 106 m3 s−1 congruent with 109 kg s−1), and an upwelling-related branch near the continental slope carrying 1 ± 0.3 Sv. The seasonal transport by the open-ocean branch intensifies and moves offshore from spring to fall (2.8 ± 1.2 Sv in spring, 2.9 ± 1.1 Sv in summer, and 4.5 ± 1.2 Sv in fall), while it carries its lowest southward mass flux in winter (1.7 ± 1.0 Sv), possibly as a result of a migration offshore the sampled region. Upwelling-related southward flow is present in spring and summer (1.9 ± 0.1 Sv and 2.4 ± 0.1 Sv, respectively) while in fall and winter it merges with the offshore southward branch. This westward migration allows a northward mass flux between the Canary Islands and the African coast (1.8 ± 0.1 Sv), that by winter reaches Cape Ghir (0.5 ± 0.2 Sv). Seasonal air–sea heat fluxes fit well with the climatological values. The net phosphate transport in the surface layer indicates that primary production was negligible in this region during January 1997 and April 1998, though in this last month production was probably starting as a result of significant nutrient supply
Descripción32 pages, 22 pages, 9 tables
Versión del editorhttp://dx.doi.org/10.1016/j.pocean.2006.03.019
URIhttp://hdl.handle.net/10261/26994
DOI10.1016/j.pocean.2006.03.019
ISSN0079-6611
Aparece en las colecciones: (ICM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.